Advertisement

Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187.

      This paper is only available as a PDF. To read, Please Download here.
      Cysteine residues 110 and 187 are essential for the formation of the correct bovine rhodopsin structure (Karnik, S. S., Sakmar, T. P., Chen, H.-B., and Khorana, H. G. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8459-8463). We now show that the sulfhydryl groups of these 2 cysteine residues interact to form a disulfide bond. Rhodopsin mutants containing cysteine—-serine substitutions were prepared as follows. In one mutant, CysVII, all the 10 cysteine residues of rhodopsin were replaced by serines. A second mutant, CysVIII, contained only C110 and C185; a third mutant, CysIX, contained only C185 and C187 while the fourth mutant, CysX, contained only C110 and C187. Only mutant CysX formed functional rhodopsin. Mutants CysVIII and CysIX reacted with [3H]iodoacetic acid showing the presence of free sulfhydryl groups while mutant CysX was inert to this reagent. CysX reacted with cyanide ion to form a thiocyanate derivative showing the presence of a disulfide bond. The C110-C187 disulfide bond is buried in rhodopsin because reactions with disulfide reducing agents and cyanide ion require prior treatment with denaturants.

      REFERENCES

        • Stryer L.C.
        Annu. Rev. Neurosci. 1986; 9: 87-119
        • Dratz E.A.
        • Hargrave P.A.
        Trends Biochem. Sci. 1983; 8: 128-131
        • Dixon R.A.F.
        • Kobilka B.K.
        • Strader D.J.
        • Benovic J.L.
        • Dohlman M.G.
        • Frielle T.
        • Bolanowski M.A.
        • Bennett C.D.
        • Rands E.
        • Diehl R.E.
        • Mumford R.A.
        • Slater E.E.
        • Sigal E.S.
        • Caron M.G.
        • Lefkowitz R.J.
        • Strader C.D.
        Nature. 1986; 321: 75-79
        • Karnik S.S.
        • Sakmar T.P.
        • Chen H.-B.
        • Khorana H.G.
        Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 8459-8463
        • Ferretti L.
        • Karnik S.S.
        • Khorana H.G.
        • Nassal M.
        • Oprian D.D.
        Proc. Natl. Acad. Sci. U. S. A. 1986; 83: 599-603
        • Oprian D.D.
        • Molday R.S.
        • Kaufman R.J.
        • Khorana H.G.
        Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 8874-8878
        • Hong K.
        • Hubbell W.L.
        Biochemistry. 1973; 12: 4517-4523
        • Catsimpoolas N.
        • Wood J.L.
        J. Biol. Chem. 1964; 239: 4132-4137
        • Vanaman T.C.
        • Stark G.R.
        J. Biol. Chem. 1970; 245: 3565-3573
        • DeGrip W.J.
        • van de Laar G.L.M.
        • Daemen F.J.M.
        • Bonting S.L.
        Biochim. Biophys. Acta. 1973; 325: 315-322
        • Ruegg U.-Th.
        • Rudinger J.
        Methods Enzymol. 1977; 47: 111-116
        • Sakmar T.P.
        • Franke R.R.
        • Khorana H.G.
        Proc. Natl. Acad. Sci. U. S. A. 1989; 86: 8309-8313
        • Findlay J.B.C.
        • Pappin D.J.C.
        Biochem. J. 1986; 238: 625-642
        • DeGrip W.J.
        • Daemen F.J.M.
        Methods Enzymol. 1982; 81: 223-236
        • Chen Y.S.
        • Hubbell W.L.
        Membr. Biochem. 1978; 1: 107-112
        • Ovchinnikov Y.A.
        • Abdulaev N.G.
        • Bogachuk A.S.
        FEBS Lett. 1988; 230: 1-5
        • Applebury M.L.
        • Hargrave P.A.
        Vision Res. 1986; 26: 1881-1895
        • Konig B.
        • Arendt A.
        • McDowell J.H.
        • Kahlert M.
        • Hargrave P.A.
        • Hofmann K.P.
        Proc. Natl. Acad. Sci. U. S. A. 1989; 86: 6878-6882
        • Nathans J.
        • Davenport C.M.
        • Maumenee I.H.
        • Lewis R.L.
        • Hejtmancik J.F.
        • Litt M.
        • Lovrian E.
        • Weleber R.
        • Bachyn-ski B.
        • Zwas F.
        • Klingman R.
        • Fishman G.
        Science. 1989; 245: 831-838
        • Nathans J.
        • Thomas D.
        • Hogness D.S.
        Science. 1986; 232: 199-203
        • Julius D.
        • MacDermott A.B.
        • Jessel T.M.
        • Huang K.
        • Moli-neaux S.
        • Schieren I.
        • Axel R.
        Cold Spring Harbor Symp. Quant. Biol. 1988; LIII: 385-393
        • Hershey A.D.
        • Krause J.E.
        Science. 1990; 247: 958-961
        • Vauquelin G.
        • Bottari S.
        • Kanarek L.
        • Strosberg A.D.
        J. Biol. Chem. 1979; 254: 4462-4469
        • Pederson S.E.
        • Ross E.M.
        J. Biol. Chem. 1985; 260: 14150-14157
        • Dixon R.A.F.
        • Sigal I.S.
        • Candelore M.R.
        • Register R.B.
        • Scattergood W.
        • Rands E.
        • Strader C.D.
        EMBO J. 1987; 6: 3269-3275
        • Liggett S.B.
        • Bouvier M.
        • O’Dowd B.F.
        • Caron M.G.
        • Lefkow-itz R.J.
        • DeBlasi A.
        Biochem. Biophys. Res. Com-mun. 1989; 165: 257-263
        • Malbon C.C.
        • George S.T.
        • Moxham C.P.
        Trends Biochem. Sci. 1987; 12: 172-176
        • Parini A.
        • Homey C.J.
        • Graham R.M.
        Circ. Res. 1987; 61: 1-100-104
        • Curtis C.A.M.
        • Wheatly M.
        • Bansal S.
        • Birdsall N.J.M.
        • Eveleigh P.
        • Pedder E.K.
        • Poyner D.
        • Hulme E.C.
        J. Biol. Chem. 1989; 264: 489-495
        • Liao C.-F.
        • Themmen A.P.N.
        • Joho R.
        • Barberis C.
        • Birnbau-mer M.
        • Birnbaumer L.
        J. Biol. Chem. 1989; 264: 7328-7337
        • Ovchinnikov Y.A.
        • Abdulaev N.G.
        • Feigina M.Y.
        • Artamonov I.D.
        • Zolotarev A.S.
        • Kostina M.B.
        • Bogachuk A.S.
        • Mi-roshnikov A.I.
        • Matinov V.I.
        • Kudelin A.B.
        Bioorg. Khim. 1982; 8: 1011-1014
        • Hargrave P.A.
        • McDowell J.M.
        • Curtis D.R.
        • Wang J.K.
        • Juszczak E.
        • Fong S.L.
        • Mohana Rao J.K.
        • Argos P.
        Biophys. Struct. Mech. 1983; 9: 235-244
        • Nathans J.
        • Hogness D.S.
        Cell. 1983; 34: 807-814