Advertisement

Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase.

      This paper is only available as a PDF. To read, Please Download here.
      In an attempt to clarify why the brain oxidizes fatty acids poorly or not at all, the activities of beta-oxidation enzymes present in rat brain and rat heart mitochondria were measured and compared with each other. Although the apparent Km values and chain-length specificities of the brain and heart enzymes are similar, the specific activities of all but one brain enzyme are between 4 and 50% of those observed in heart mitochondria. The exception is 3-ketoacyl-CoA thiolase (EC 2.3.1.16) whose specific activity in brain mitochondria is 125 times lower than in heart mitochondria. The partially purified brain 3-ketoacyl-CoA thiolase was shown to be catalytically and immunologically identical with the heart enzyme. The low rate of fatty acid oxidation in brain mitochondria, estimated on the basis of palmitoylcarnitine-supported respiration and [1-14C]palmitoylcarnitine degradation to be less than 0.5 nmol/min/mg of protein, may be the consequence of the low activity of 3-ketoacyl-CoA thiolase. Inhibition of [1-14C]palmitoylcarnitine oxidation by 4-bromocrotonic acid proves the observed oxidation of fatty acids in brain to be dependent on 3-ketoacyl-CoA thiolase and thus to occur via beta-oxidation. Since the reactions catalyzed by carnitine palmitoyltransferase (EC 2.3.1.21) and acyl-CoA synthetase (EC 6.2.1.3) do not seem to restrict fatty acid oxidation in brain, it is concluded that the oxidation of fatty acids in rat brain is limited by the activity of the mitochondrial 3-keto-acyl-CoA thiolase.

      REFERENCES

        • Newsholme A.A.
        • Start C.
        Regulation in Metabolism. John Wiley & Sons, London, New York1973
        • Page M.A.
        • Krebs H.A.
        • Williamson D.H.
        Biochem. J. 1971; 121: 49-53
        • Vignais P.M.
        • Gallagher C.H.
        • Zabin I.
        J. Neurochem. 1958; 2: 283-287
        • Beattie D.S.
        • Basford R.E.
        J. Neurochem. 1965; 12: 103-111
        • Kawamura N.
        • Kishimoto Y.
        J. Neurochem. 1981; 36: 1786-1791
        • Vannucci S.
        • Hawkins R.
        J. Neurochem. 1983; 41: 1718-1725
        • Hawkins R.A.
        Fed. Proc. 1986; 45: 2055-2059
        • Dhopeshwarkar G.A.
        • Subramanian C.
        • Mead J.F.
        Biochim. Biophys. Acta. 1973; 296: 257-264
        • Bird M.I.
        • Munday L.A.
        • Saggerson E.D.
        • Clark J.B.
        Biochem. J. 1985; 226: 323-330
        • Veerkamp J.H.
        • Van Moerkerk H.T.B.
        • Glatz J.F.C.
        • Van Hinsbergh V.W.M.
        Biochim. Biophys. Acta. 1983; 753: 399-410
        • Bradshaw R.A.
        • Robinson G.W.
        • Hass G.M.
        • Hill R.L.
        J. Biol. Chem. 1969; 244: 1755-1763
        • Weeks G.
        • Wakil S.J.
        J. Biol. Chem. 1968; 243: 1180-1189
        • Seubert W.
        Biochem. Prep. 1960; 7: 80-83
        • Goldman P.
        • Vagelos P.R.
        J. Biol. Chem. 1961; 236: 2620-2623
        • Seubert W.
        • Lamberts I.
        • Kramer R.
        • Ohly B.
        Biochim. Biophys. Acta. 1968; 164: 498-517
        • Ellman G.L.
        Arch. Biochem. Biophys. 1959; 82: 70-77
        • Steinman H.M.
        • Hill R.L.
        Methods Enzymol. 1975; 35: 136-151
        • Staack H.
        • Binstock J.F.
        • Schulz H.
        J. Biol. Chem. 1978; 253: 1827-1831
        • Lai J.C.K.
        • Clark J.B.
        Methods Enzymol. 1979; 55: 51-59
        • Chappell J.B.
        • Hansford R.G.
        Birnie G.D. Subcellular Components. 2nd Ed. Butterworth & Co. Ltd., London1969: 77-91
        • Bailey J.L.
        Techniques in Protein Chemistry. 2nd Ed. Elsevier/North-Holland, New York1967: 340-341
        • Binstock J.F.
        • Schulz H.
        Methods Enzmol. 1981; 71: 403-411
        • Davidson B.
        • Schulz H.
        Arch. Biochem. Biophys. 1982; 213: 155-162
        • Fong J.C.
        • Schulz H.
        Methods Enzymol. 1981; 71: 390-398
        • Lynen F.
        • Ochoa S.
        Biochem. Biophys. Acta. 1953; 12: 299-314
        • Fong J.C.
        • Schulz H.
        J. Biol. Chem. 1978; 253: 6917-6922
        • Schulz H.
        • Staack H.
        Methods Enzymol. 1981; 71: 398-403
        • Brunda M.J.
        • Minden P.
        • Sharpton T.R.
        • McClatchy J.K.
        • Farr R.S.
        J. Immunol. 1977; 119: 193-198
        • Olowe Y.
        • Schulz H.
        J. Biol. Chem. 1982; 257: 5408-5413
        • Schulz H.
        Vance D.E. Vance J.E. Biochemistry of Lipids and Membranes. Benjamin-Cummings, Menlo Park, CA1985: 116-142
        • McGarry J.D.
        • Foster D.W.
        Annu. Rev. Biochem. 1980; 49: 395-420
        • Middleton B.
        Methods Enzymol. 1975; 35: 128-136
        • Reddy T.S.
        • Sprecher H.
        • Bazan N.G.
        Eur. J. Biochem. 1984; 145: 21-29
        • Pardridge W.M.
        • Mietus L.J.
        J. Neurochem. 1980; 34: 463-466
        • Spitzer J.J.
        Physiologist. 1973; 16: 55-68
        • Owen O.E.
        • Morgan A.P.
        • Kemp H.G.
        • Sullivan J.M.
        • Herrera M.G.
        • Cahill Jr., G.F.
        J. Clin. Invest. 1967; 46: 1589-1595