Advertisement

Developmental expression, cellular localization, and testosterone regulation of alpha 1-antitrypsin in Mus caroli kidney.

      This paper is only available as a PDF. To read, Please Download here.
      alpha 1-Antitrypsin (alpha 1-protease inhibitor), an essential plasma protein, is synthesized predominantly in the liver of all mammals. We have previously shown that Mus caroli, a Southeast Asian mouse species is exceptional in that it expresses abundantly alpha 1-antitrypsin mRNA and polypeptide, in the kidney as well as the liver (Berger, F.G., and Baumann, H. (1985) J. Biol. Chem. 260, 1160-1165) providing a unique model for examination of the evolution of genetic determinants of tissue-specific gene expression. In the present paper, we have further characterized alpha 1-antitrypsin expression in M. caroli. The extrahepatic expression of alpha 1-antitrypsin is limited to the kidney, specifically within a subset of the proximal tubule cells. The developmental pattern of alpha 1-antitrypsin mRNA expression in the kidney differs from that in the liver. In the kidney, alpha 1-antitrypsin mRNA is present at only 2-4% adult level at birth and increases very rapidly to adult level during puberty between 26 and 36 days of age. There are no significant changes in liver alpha 1-antitrypsin mRNA levels during this period. Testosterone, while having only modest affects on alpha 1-antitrypsin mRNA accumulation in the adult kidney, causes a 20-fold induction of the mRNA in the pre-pubertal kidney. This suggests that the increase in alpha 1-antitrypsin mRNA expression during puberty is testosterone mediated. Southern blot analyses of Mus domesticus and M. caroli genomic DNA and a cloned M. caroli alpha 1-antitrypsin genomic sequence, indicate that a single alpha 1-antitrypsin gene exists in M. caroli, whereas multiple copies exist in M. domesticus. These data show that the alteration in tissue specificity of alpha 1-antitrypsin mRNA accumulation that has occurred during Mus evolution is associated with distinctive developmental and hormonally regulated expression patterns.

      REFERENCES

        • Travis J.
        • Salvesen G.S.
        Annu. Rev. Biochem. 1983; 52: 655-709
        • Rogers J.
        • Kalsheker N.
        • Wallis S.
        • Speer A.
        • Coutelle C.H.
        • Woods D.
        • Humphries S.E.
        Biochem. Biophys. Res. Commun. 1983; 116: 375-382
        • Minnich M.
        • Kueppers F.
        • James H.
        Comp. Biochem, Physiol. B. 1984; 78: 413-419
        • Ohlsson K.
        Reich E. Rifkin D. Shaw E. Proteases and Biological Control. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY1975: 591
        • Berger F.G.
        • Baumann H.
        J. Biol. Chem. 1985; 260: 1160-1165
        • Barth R.K.
        • Gross K.W.
        • Gremke L.C.
        • Hastie N.D.
        Proc. Natl. Acad. Sci. U. S. A. 1982; 79: 500-504
        • Hill R.E.
        • Shaw P.H.
        • Boyd P.A.
        • Baumann H.
        • Hastie N.D.
        Nature. 1984; 311: 175-177
        • Sampsell B.M.
        • Held W.A.
        Genetics. 1985; 109: 549-568
        • Bowman L.H.
        • Rabin B.
        • Schlessinger D.
        Nucleic Acids Res. 1981; 9: 4951-4966
        • Dickinson D.P.
        • Gross K.W.
        • Piccini N.
        • Wilson C.M.
        Genetics. 1984; 108: 651-667
        • Rigby P.W.
        • Diekmann M.
        • Rhodes C.
        • Berg P.
        J. Mol. Biol. 1977; 113: 237-251
        • Feinberg A.P.
        • Vogelstein B.
        Anal. Biochem. 1983; 132: 6-13
        • Johnson M.T.
        • Johnson B.A.
        Biotechniques. 1984; 2: 156-162
        • Labarca C.
        • Paigen K.
        Proc. Natl. Acad. Sci. U. S. A. 1977; 74: 4462-4465
        • Chirgwin J.M.
        • Przybyla A.E.
        • Rutter W.J.
        Biochemistry. 1979; 18: 5294-5299
        • Shaw P.H.
        • Held W.A.
        • Hastie N.D.
        Cell. 1983; 32: 755-761
        • McGowan R.A.
        • Kane-Haas C.
        • Gross K.
        Biotechniques. 1985; 4: 1-8
        • Hafen E.
        • Levine M.
        • Garber R.L.
        • Gehring W.J.
        EMBO J. 1983; 2: 617-623
        • Chapman V.
        • Forrester L.
        • Stanford J.
        • Hastie N.
        • Rossant J.
        Nature. 1984; 307: 284-286
        • Southern E.M.
        J. Mol. Biol. 1975; 98: 503-517
        • Krauter K.S.
        • Citron B.A.
        • Hsu M.-T.
        • Powell D.
        • Darnell Jr., J.E.
        DNA (N. Y.). 1986; 5: 29-36
        • Tisher C.
        Brenner B. Rector F. The Kidney. 2nd Ed. Saunders Co., Philadelphia1981: 3-29
        • Baumann H.
        • Latimer J.
        • Glibetic M.
        Arch. Biochem. Biophys. 1985; 246: 488-493
        • Derman E.
        Proc. Natl. Acad. Sci. U. S. A. 1981; 78: 5425-5429
        • Watson C.S.
        • Salomon D.
        • Catterall J.
        Ann. N. Y. Acad. Sci. 1983; 371: 101-113
        • Swank R.T.
        • Paigen K.
        • Davey R.
        • Chapman V.
        • Labarca C.
        • Watson G.
        • Ganschow R.
        • Brandt E.
        • Novak E.
        Recent Prog. Horm. Res. 1978; 34: 401-436
        • Berger F.
        • Loose D.
        • Meisner H.
        • Watson G.
        Biochemistry. 1986; 25: 1170-1175