Advertisement

Biosynthesis, glycosylation, and intracellular transport of intestinal lactase-phlorizin hydrolase in rat.

      This paper is only available as a PDF. To read, Please Download here.
      The biosynthesis of rat intestinal lactase-phlorizin hydrolase was studied by pulse-labeling of jejunal explants from 5-day-old suckling rats in organ culture. Explants were either continuously labeled with [35S] methionine for 15, 30, and 60 min or pulse-labeled for 30 min and chased for various periods of time up to 6 h in the presence or absence of protease inhibitors (PI), leupeptin, phenylmethylsulfonyl fluoride, and soybean trypsin inhibitor. Lactase-phlorizin hydrolase was immunoprecipitated from microvillus membrane (MVM) and ER-Golgi fractions with monoclonal antibodies. After pulse-labeling, lactase-phlorizin hydrolase from the ER-Golgi fraction appeared on SDS-PAGE as one band of approximately 220 kDa, regardless of the presence or absence of PI in the culture media. The 220-kDa protein band could also be labeled after incubation with [2-3H]mannose. In the absence of PI, the 220-kDa band appeared in the MVM by 30 min chase, simultaneously with a 180-kDa band, and by 60 min of chase an additional band of 130 kDa was seen. With increasing time of chase, the relative intensity of the 130-kDa band increased, whereas that of the 220-kDa band decreased, suggesting a precursor-product relationship. When PI were added to the medium, the formation of the 180-kDa band was not affected, but the conversion of the 180-kDa protein to the 130-kDa protein was virtually blocked. These findings suggest that lactase-phlorizin hydrolase is initially synthesized as a glycosylated precursor of 220 kDa, which is transported to the MVM. There it undergoes the following two cleavages: first, to the 180-kDa form, which is not prevented by PI used in these experiments, and second, to the 130-kDa form inhibited by PI.

      REFERENCES

        • Alpers D.H.
        J. Biol. Chem. 1969; 244: 1238-1246
        • Gray G.M.
        • Santiago N.A.
        J. Clin. Invest. 1969; 48: 716-728
        • Schlegel-Haueter S.
        • Hore P.
        • Kerry K.R.
        • Semenza G.
        Biochim. Biophys. Acta. 1972; 258: 506-519
        • Birkenmeier E.
        • Alpers D.H.
        Biochim. Biophys. Acta. 1974; 350: 100-112
        • Cousineau J.
        • Green J.R.
        Biochim. Biophys. Acta. 1980; 615: 147-157
        • Skovbjerg H.
        • Sjostrom H.
        • Noren O.
        Eur. J. Biochem. 1981; 114: 653-661
        • Skovbjerg H.
        • Noren O.
        • Sjostrom H.
        • Danielsen E.M.
        • Enevoldsen B.S.
        Biochim. Biophys. Acta. 1982; 707: 89-97
        • Tsuboi K.K.
        • Schwartz S.M.
        • Burrill P.H.
        • Kwong L.K.
        • Sunshine P.
        Biochim. Biophys. Acta. 1979; 554: 234-248
        • Jonas M.
        • Montgomery R.K.
        • Grand R.J.
        Pediatr. Res. 1985; 19: 956-962
        • Neu J.
        • Crim W.N.
        • Sadowski J.A.
        Enzyme. 1984; 32: 133-141
        • Skovbjerg H.
        • Danielsen E.M.
        • Noren O.
        • Sjostrom H.
        Biochim. Biophys. Acta. 1984; 798: 247-251
        • Danielsen E.M.
        • Skovbjerg H.
        • Noren O.
        • Sjostrom H.
        Biochim. Biophys. Res. Commun. 1984; 122: 82-90
        • Montgomery R.K.
        • Sybicki M.A.
        • Forcier A.G.
        • Grand R.J.
        Biochim. Biophys. Acta. 1981; 661: 346-349
        • Danielsen E.M.
        • Skovbjerg H.
        • Noren O.
        • Sjostrom H.
        FEBS Lett. 1981; 132: 197-200
        • Hauri H.P.
        • Sterchi E.E.
        • Bienz D.
        • Fransen J.A.M.
        • Marxer A.
        J. Cell Biol. 1985; 101: 838-851
        • Quaroni A.
        • Isselbacher K.J.
        Dev. Biol. 1985; 111: 267-279
        • Sasak V.W.
        • Ordovas J.M.
        • Elbein A.D.
        • Berninger R.W.
        Biochem. J. 1985; 232: 759-766
        • Browning T.H.
        • Trier J.S.
        J. Clin. Invest. 1969; 48: 1423-1432
        • Issenman R.M.
        • Montgomery R.K.
        • Grand R.J.
        Nutr. Res. 1983; 3: 685-697
        • Kedinger M.
        • Simon P.M.
        • Raul F.
        • Grenier J.F.
        • Haffen K.
        Dev. Biol. 1980; 74: 9-21
        • Haffen K.
        • Kedinger M.
        • Grenier J.F.
        C. R. Seances Soc. Biol. 1973; 167: 1973-1979
        • Kessler M.
        • Acuto O.
        • Storelli C.
        • Murer H.
        • Müller M.
        • Semenza G.
        Biochim. Biophys. Acta. 1978; 506: 136-154
        • Schmitz J.
        • Preiser H.
        • Maestracci D.
        • Ghosh B.K.
        • Cerda J.J.
        • Crane R.K.
        Biochim. Biophys. Acta. 1973; 323: 98-112
        • Grand R.J.
        • Chong D.A.
        • Isselbacher K.J.
        Biochim. Biophys. Acta. 1972; 261: 341-352
        • Messer M.
        • Dahlqvist A.
        Anal. Biochem. 1966; 14: 376-392
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        J. Biol. Chem. 1951; 193: 265-275
        • Laemmli U.K.
        Nature. 1970; 227: 680-685
        • Reisenauer A.M.
        • Gray G.M.
        Science. 1985; 227: 70-72
        • Ahnen D.J.
        • Santiago N.A.
        • Cezard J.P.
        • Gray G.M.
        J. Biol. Chem. 1982; 257: 12129-12135
        • Hauri H.P.
        • Quaroni A.
        • Isselbacher K.J.
        Proc. Natl. Acad. Sci. U. S. A. 1979; 76: 5183-5186
        • Grand R.J.
        • Montgomery R.K.
        • Perez A.
        Gastroenterology. 1985; 88: 531-538
        • Alpers D.H.
        • Thier S.O.
        Biochim. Biophys. Acta. 1972; 262: 535-545
        • Danielsen E.M.
        Biochem. J. 1982; 204: 639-645
        • Danielsen E.M.
        • Cowell G.M.
        • Noren O.
        • Sjostrom H.
        Biochem. J. 1984; 221: 1-14
        • Hunziker W.
        • Spiess M.
        • Semenza G.
        • Lodish H.F.
        Cell. 1986; 46: 227-234
        • Sorensen S.H.
        • Noren O.
        • Sjostrom H.
        • Danielsen E.M.
        Eur. J. Biochem. 1982; 126: 559-568
        • Alpers D.H.
        • Helms D.
        • Seetharam S.
        • May V.L.
        • Strauss A.W.
        Biochim. Biophys. Res. Commun. 1986; 134: 37-43
        • Lee L.
        • Forstner G.
        Can. J. Biochem. Cell. Biol. 1985; 63: 257-262
        • McAllister G.
        • Bailey S.B.
        Biochim. Biophys. Acta. 1986; 861: 197-200
        • Garoff H.
        • Frischauf A.M.
        • Simons K.
        • Lehrach H.
        • Delius H.
        Nature. 1980; 288: 236-241
        • Ahnen D.J.
        • Singleton J.R.
        • Hoops T.C.
        • Kloppel T.M.
        J. Clin. Invest. 1986; 77: 1841-1848
        • Yanagishita M.
        J. Biol. Chem. 1985; 260: 11075-11082
        • Umezawa H.
        • Aoyagi T.
        Barrett A.J. Proteinases in Mammalian Cells and Tissues. Elsevier North Holland Biomedical Press, Amsterdam1977: 637-662
      1. Phenylmethylene sulfonyl fluoride. Technical Update (1986), Boehringer Mannheim Biochemicals, Indianapolis, IN

        • Robberecht P.
        • Deschodt-Lanckman M.
        • Camus J.
        • Bruylands J.
        • Christophe J.
        Am. J. Physiol. 1971; 221: 376-381
        • Werlin S.L.
        • Grand R.J.
        Am. J. Physiol. 1979; 236: E446-E450
        • Naim H.Y.
        • Sterchi E.E.
        • Lentze M.J.
        Biochem. J. 1987; 241: 427-434