The τ subunit dimerizes *Escherichia coli* DNA polymerase III core through interactions with the α subunit. In addition to playing critical roles in the structural organization of the holoenzyme, τ mediates intersubunit communications required for efficient replication fork function. We identified potential structural domains of this multifunctional subunit by limited proteolysis of C-terminal biotin-tagged τ proteins. The cleavage sites of each of eight different proteases were found to be clustered within four regions of the τ subunit. The second susceptible region corresponds to the hinge between domain II and III of the highly homologous δ′ subunit, and the third region is near the C-terminal end of the τ-δ′ alignment (Guenther, B., Onrust, R., Sali, A., O’Donnell, M., and Kuriyan, J. (1997) Cell 91, 335–345). We propose a five-domain structure for the τ protein. Domains I and II are based on the crystallographic structure of δ′ by Guenther and colleagues. Domains III–V are based on our protease cleavage results. Using this information, we expressed biotin-tagged τ proteins lacking specific protease-resistant domains and analyzed their binding to the α subunit by surface plasmon resonance. Results from these studies indicated that the α binding site of τ lies within its C-terminal 147 residues (domain V).

The structurally complex DNA polymerase III holoenzyme is responsible for replication of the majority of the chromosome in *Escherichia coli*. The polymerase of the enzyme and 3′ → 5′ exonuclease proofreading activities are contained within the heterotrimeric DNA polymerase III core (αεθ) subassembly. The holoenzyme contains seven different auxiliary subunits (β, γ, δ, δ′, τ, χ, and ψ) that confer a number of special properties requisite for replicative polymerase function (1–4). These properties include a rapid elongation rate, high processivity, and the ability to communicate with primosomal proteins at the replication fork (5–7). The auxiliary subunits are divided between two functional assemblies: a β2 sliding clamp processivity factor, and the DnaX complex, a multiprotein ATPase that assembles the β2 processivity factor onto the primer-template.

Both the τ and γ subunits of the holoenzyme are expressed from dnaX. Translation of dnaX gene yields the full-length τ subunit (71 kDa) as well as the γ subunit (47 kDa), which corresponds to the N-terminal two-thirds of the τ sequence (8–11). The γ subunit results from −1 translational frameshifting to a frame with an early stop codon. The τ subunit plays central roles in the structure and function of the holoenzyme. Interactions between the τ and γ subunits result in the formation of a dimeric DNA polymerase III′ (αεθ)δ′ (12, 13). This dimeric polymerase effectively couples synthesis of the leading and lagging strands (12, 14). The τ subunit binds tightly to α, but the shorter dnaX translation product (γ) does not. This observation suggested that the C-terminal portion unique to τ is critical for its interactions with the α subunit. Indeed, the α subunit and C-τ, an OmpT proteolytic fragment corresponding to the 215 C-terminal residues of τ, bind with a 1:1 stoichiometry (15).

Interactions between the τ subunit and DnaB helicase (DnaB) are critical for rapid movement at the replication fork (16, 17). In systems using the reconstituted DNA polymerase III holoenzyme, τ subunit–DnaB interactions stimulate the rate of helicase unwinding more than 10-fold to levels approaching the rate of fork progression in vivo. The C-terminal region found in τ but lacking in γ has been implicated in replication fork function. The C-τ fragment was shown to interact with DnaB and to effectively couple the leading strand polymerase with DnaB helicase at the replication fork (15).

The τ subunits bind γδδ′χψ to form the DnaX complex, τγγ′δδ′χψ (18, 19). The τ subunit also serves as a bridge between α and a χ-SSB interaction, strengthening the holoenzyme interactions with the single-stranded DNA-binding protein-coated lagging strand at the replication fork (20, 21). As part of the elongation complex, τ protects β2 from removal by exogenous γ complex, increasing the processivity of the replicase to the megabase range (22).

Clearly, τ mediates its functions through interactions with other subunits. To identify distinct structural domains that might mediate these multiple interactions, we performed limited proteolytic digestion of recombinant, biotin-tagged τ. Based on these findings, we constructed plasmids encoding truncated τ fusion proteins lacking one or more putative structural domains. The relative binding of each resultant purified fusion protein to the α subunit was determined by surface plasmon resonance. These studies enabled the identification of domain V (147 C-terminal amino acid residues) as the α subunit-binding domain of τ.

EXPERIMENTAL PROCEDURES

*Strains—*E. coli DH5α and HB101 were used for initial molecular cloning procedures and plasmid propagation. *E. coli* BL21 and BL21(DE3) were employed for protein expression.

*Chemicals and Reagents—*All proteases were purchased from Roche Molecular Biochemicals or Sigma. d-Biotin was purchased from Sigma. SDS-polyacrylamide gel electrophoresis protein standards were ob-
tained from Amersham Pharmacia Biotech, and prestained molecular mass markers were from Bio-Rad or Life Technologies, Inc. Ni²⁺-NTA resin, QiAquick Gel extraction kits, QiAquick PCR purification kits, and plasmid preparation kits were purchased from Qiagen (Valencia, CA). The Coomassie Plus Protein Assay Reagent and ImmunoPure Streptavidin are vended by Pierce. CM5 sensor chips (research grade), P-20 surfactant, NHS, EDC, and ethanolamine hydrochloride were obtained from BLAcore, Inc. (Piscataway, NJ).

Construction of the Fusion Plasmids—The N- and C-terminal fusion vectors pPA1-N0 and pPA1-C0 were constructed as previously described (23). The fusion peptides contained a short 13-amino acid biotinylation sequence, a hexahistidine sequence, and a thrombin cleavage site. The fusion peptides are under the control of either the T7 promoter sequence or the PA1/04/03 promoter. The fusion peptides were generated by PCR amplification of a truncated 413 amino acid of the dnaX gene from pDG50, which was obtained from BIAcore, Inc. (Piscataway, NJ).

The underlined sequences are complementary to portions of the dnaX gene.

Table I

| Oligonucleotide | Use | Sequence
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2782</td>
<td>N-Δ1τ</td>
<td>AAGCTTGGCAGGCGCCATTATAAGCAGGACACTGATAGCTTCACGACTTCTTTACGAAATGCGCCCAACCA</td>
</tr>
<tr>
<td>2783</td>
<td>N-Δ1τ</td>
<td>TACCAACTTCAAGCAGACTATAGATTGGCAGG</td>
</tr>
<tr>
<td>3321</td>
<td>C(0)τ</td>
<td>TACCAAVTTTGGCTGGTCAGCTTG</td>
</tr>
<tr>
<td>3322</td>
<td>C(0)τ</td>
<td>GGAAGTGTGGCCTTGTG</td>
</tr>
<tr>
<td>C-Δ147P1</td>
<td>C-Δ147τ</td>
<td>AAAACACTACAGGCGAGCCGACAAGTGC</td>
</tr>
<tr>
<td>C-Δ147P2</td>
<td>C-Δ147τ</td>
<td>TGGCCGCGATGCGCCATAGGAGCCAGG</td>
</tr>
<tr>
<td>N-Δ413P1</td>
<td>N-Δ413τ</td>
<td>AAGCTTACAGTGGATTTTTGACGAAATGCGCCACCA</td>
</tr>
<tr>
<td>N-Δ413P2</td>
<td>N-Δ413τ</td>
<td>CTTCAGATGGGAAGACCCACAC</td>
</tr>
<tr>
<td>N-Δ496P1</td>
<td>N-Δ496τ</td>
<td>N-Δ413P1</td>
</tr>
<tr>
<td>N-Δ496P2</td>
<td>N-Δ496τ</td>
<td>CTTCAGATGGGAAGACCCACAC</td>
</tr>
</tbody>
</table>

The abbreviations used are: NTA, nitrotriacetic acid; CAPS, 3-cy clohexylamino-1-propanesulfonic acid; PCR, polymerase chain reaction; NHS, N-hydroxysuccinimide; EDC, 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide; PMSF, phenylmethylsulfonyl fluoride; RU, response units.

α Binding Domain of τ

The restriction site map more proximal to the 3' end. The KpnI restriction site was located downstream of the dnaX gene. For each of the other expression plasmids, E. coli bearing plasmids PA1-N-Δ1τ was grown at 37 °C to an optical density of 0.8 in 6 liters of F medium (26) containing 100 μg/ml ampicillin. Bacteria transformed with each of the other plasmids were grown to the same density under the same conditions, except that the volume of F medium was 2 liters. The induction process was started by the addition of isopropyl-β-D-thio-galactoside (final concentration, 1 mM). Additional ampicillin (100 μg/ml) and d-biotin (10 μg/ml) were added to the media at the same time. After 2 h of induction, cells were harvested by centrifugation at 5860 × g for 10 min at 4 °C and resuspended in 1 ml of Tris-sucrose buffer (50 mM Tris, pH 7.5, and 10% sucrose)/g of cells. Cells were quickly frozen in liquid N2 and stored at −80 °C.

Ni²⁺-NTA Chromatography—BL21 cells containing expression plasmids PA1-C(0)τ or PA1-N-Δ1τ were lysed in the presence of lysozyme (2 mg/g of cells), 2 mM EDTA, 5 mM benzamidine, and 1 mM PMSF for 1 h on ice followed by a 4-min incubation at 37 °C (26). For BL21(DE3) cells containing expression plasmids PA1-C(0)τ, PA1-N-Δ1τ, or plasmid PA1-N-Δ147τ, the lysis-N-Δ1τ was modified by increasing the concentrations of lysozyme (2.5 mg/g of cells) and EDTA (5 mM) and by extending the heat treatment step to 6 min at 37 °C. Lysates were centrifuged at 23,300 × g at 4 °C for 1 h to remove debris. For purification of N-Δ1τ, 0.226 g of ammonium sulfate was added to each milliliter of the resulting supernatant and precipitant was collected by centrifugation at 23,300 × g at 4 °C for 1 h. Protein pellets were resuspended to 30 mg protein/ml in Buffer L (50 mM sodium phosphate, pH 7.6, 500 mM NaCl, 0.5% glycerol, 0.5 mM PMSF, 0.5 mM benzamidine, and 1 mM imidazole). Ni²⁺-NTA resin, previously equilibrated with Buffer L, was added to the suspensions for binding. Binding was conducted at 4 °C for 2 h with gentle shaking. Slurries of Ni²⁺-NTA resin/r fusion protein complexes were then packed into columns. Columns were washed with 10 column volumes of Buffer L and then with roughly 30 column volumes of Buffer W (50 mM sodium phosphate, pH 7.6, 500 mM NaCl, 20% glycerol, 0.5 mM PMSF, and 0.5 mM benzamidine) plus 23 mM imidazole. Bound N-Δ1τ protein was eluted with 10 column volumes of a 25–150 mM imidazole gradient in Buffer W. The peak fraction eluted at about 60 mM imidazole. Wash and elution steps were performed at 4 °C.

The purification procedures for C(0)τ, C-Δ147τ, N-Δ147τ, and N-Δ496τ were the same as above except for modifications of the purification, binding, and washing steps for N-Δ147τ and N-Δ496τ and a simplified elution step for each of these four proteins. For N-Δ147τ and N-Δ496τ, supernatant proteins were precipitated by adding 0.36 g of ammonium sulfate to each milliliter of cell lysates. For these two fusion proteins, the imidazole concentrations in the binding and washing steps were 2 and 15 mM, respectively. The N-Δ147τ, N-Δ496τ, C(0)τ, and
C-\Delta147r proteins were each eluted in single steps with 150 mm imidazole in Buffer W.

SDS-Polyacrylamide Gel Electrophoresis—Proteins were separated by overnight electrophoresis at 65 V on a 10–17.5% SDS-polyacrylamide gradient gel (0.75 x 18 x 16 cm). Gels were stained with a 0.1% solution of Coomassie Brilliant Blue R-250 in 20% methanol and 10% acetic acid and then destained in a solution of 10% methanol and 10% acetic acid.

Biotin Blots—After separation by SDS-polyacrylamide gel electrophoresis, proteins were transferred onto polyvinylidene difluoride membranes at 500 mA for 3 h in 25 mM Tris-HCl, 192 mM glycine, pH 8.3, 20% methanol, and 0.01% SDS. Membranes were dipped in methanol and then air-dried for 20 min. Membranes were incubated with alkaline phosphatase-conjugated streptavidin (2 \mu g/ml) in TBS + 0.05% Tween 20 plus 0.5% nonfat milk for 1 h at room temperature and then washed three times in TBS +0.05% Tween20. Blots were developed in a substrate solution containing nitroblue tetrazolium chloride (0.33 mg/ml) and 5-bromo-4-chloro-3-indolylphosphate (0.8 mg/ml) in 0.1 Tris-HCl (pH 9.5), 0.1 \mu l NaCl, and 50 mM MgCl2. Reactions were stopped by washing the membranes with distilled water.

Limited Proteolysis—C(0)\Delta13r digestions were carried out in 50 mm HEFES-KOH (pH 7.4), 150 mM NaCl, 10% glycerol, and 0.1 mM EDTA. Proteolytic digestions of C-\Delta13r were in 50 mM Tris-HCl (pH 7.6), 100 mM NaCl, 5% glycerol, and 10 mM Mg(CH3CO2)2. At different time points, 15-\mu l aliquots from reaction mixtures were removed, mixed with 8 \mu l of stop buffer (0.18 x Tris, pH 6.8, 30% sucrose, 6% SDS, 180 mm dithiothreitol), and then immediately boiled for 2 min. Each aliquot contained 3 \mu g of protein. Digestion products were separated by SDS-polyacrylamide gel electrophoresis and then stained with Coomassie Brilliant Blue or transferred onto a polyvinylidene difluoride membrane for biotin blots.

Protein Sequencing—After digestion, the selected biotinylated fragments were purified from others by using Ni2+-NTA chromatography with the same buffers used for N-\Delta1 except that urea was added to the binding and washing buffer at 8 M final concentration. These purified biotinylated fragments were resolved by SDS-polyacrylamide gel electrophoresis and transferred onto polyvinylidene difluoride membranes in 10 mA CAFS (pH 11.0) and 10% methanol at constant current (0.4 A) for 3 h. The membranes were washed with 20% aqueous methanol and then subjected to N-terminal sequence analysis using standard Edman chemistry (James McManaman, University of Colorado Cancer Center Protein Core Laboratory).

Protein Determinations—Concentrations of all purified proteins were determined by UV spectroscopy using their extinction coefficients. Concentrations of \tau fusion proteins were determined by the Pierce Coomassie Plus Protein Assay Reagent according to the manufacturer’s instructions. Bovine serum albumin (fat-free; Sigma) was used as a standard.

DNA Polymerization Assays—Activities of \tau fusion proteins were measured by their requirement for reconstitution of holoenzyme activity and by measuring DNA synthesis from a primed M13Gori template (26). Assay mixtures (25 \mu l) contained 500 pmol of M13Gori (as nucleotides), 100 units (40 ng) of DNA polymerase III core (ae\theta, \beta, \delta', \chi), and the test \tau protein (20–50 fmol). Reactions were performed in a buffer containing 50 mM HEFES-KOH (pH 7.5), 10% (v/v) glycerol, 100 mM potassium glutamate, 10 mM dithiothreitol, 10 mM Mg(CH3CO2)2, 200 \mu g/ml bovine serum albumin, 0.02% (v/v) Tween 20, 48 \mu M dATP, 48 \mu M dGTP, 48 \mu M dTTP, 18 \mu M [3H]TTP (specific activity, 520 cpm/pmol TTP), and 200 \mu M rTTP. Assay mixtures were incubated at 30 °C for 5 min, quenched by trichloroacetic acid precipitation, and then filtered through GF/C filters (26). One unit is defined as the amount of enzyme catalyzing the incorporation of 1 pmol of dNTPs/min at 30 °C.

Surface Plasmon Resonance—A BIAcore™ instrument was used for protein binding analyses. CM5 research grade sensor chips were used for all experiments. The carboxymethyl dextran matrix of the sensor chip surface was activated using a 220-\mu l injection of 10 mM sodium acetate (pH 4.5) buffer at 0.2 and 0.1 mg/ml, respectively. IgG was used to partially block the negatively charged carboxyl groups on the sensor chip surface. Unreacted NHS ester groups were inactivated using 1 \mu l ethanolamine-HCl (pH 8.5). Typically, 2000 response units (RU) of streptavidin were immobilized. The biotinylated \tau proteins were then injected over the immobilized streptavidin in HBS buffer (10 mM HEFES, pH 7.4, 150

![FIG. 1. Construction of plasmids that express \tau with N- or C-terminal tags.](https://example.com/image1.png)

The oligonucleotides and PCR primers used are listed in Table 1. P_{A1} and P_{run} are the P_{A1/04/03} and tac promoter, respectively. All of the plasmids shown contain the \beta-lactamase gene and lacI\tau. The fusion peptide region contains a short biotinylation sequence, a hexahistidine sequence, and a thrombin cleavage site (23).

A, construction of N-terminal \tau fusion expression plasmid with P_{A1} promoter. B, construction of C-terminal \tau fusion expression plasmid with P_{run} promoter.
Expression and Purification of the C(0)τ and N-Δ1τ Proteins—We constructed plasmids PA1-C(0)τ (Fig. 1A) and PA1-N-Δ1τ (Fig. 1B), which encode C(0)τ and N-Δ1τ, respectively. Our nomenclature system for truncated fusion proteins indicates the number of terminal residues deleted following the Δ; the preceding N or C indicates the terminus from which the amino acids were deleted. The fusion peptide is located at the truncated terminus. N-Δ1τ, for example, indicates that one amino acid was deleted from the N terminus of the τ sequence and that the fusion peptide was added to the new N terminus. The expressed C(0)τ and N-Δ1τ represented ~5% of the total cell protein, as determined by densitometric scans of Coomassie-stained gels.

C(0)τ and N-Δ1τ were purified via Ni2+-NTA metal chelating chromatography (Table II). The hexahistidine sequence within the fusion peptide specifically interacts with Ni2+ chelated to the column resin. Lysates (FrI) were prepared from 21 g of C(0)τ or 50 g of N-Δ1τ expression cells. Both C(0)τ and N-Δ1τ were recovered at >85% purity after Ni2+-NTA chromatography. The activity peaks of the eluted fractions of both C(0)τ and N-Δ1τ corresponded to each of their protein peaks (data not shown). Both C(0)τ and N-Δ1τ were fully active compared with wild-type τ protein in DNA polymerization assays. C(0)τ and N-Δ1τ were the only biotinylated proteins in the corresponding eluted fractions examined by the biotin blot analysis (data not shown).

Limited Proteolysis of C(0)τ—Limited proteolyses were performed to identify protease-sensitive interdomain hinges of the τ protein. Eight different proteases that encompass a broad spectrum of substrate specificities were tested: chymotrypsin, endoprotease Glu-C (SV8), papain, subtilisin, trypsin, thermolysin, endoprotease Asp-N, and endoprotease Lys-C. We first investigated the effects of varying the protease: C(0)τ ratios and incubation times on the observed proteolytic products. Varying incubation times distinguished the initial cleavage products and also established the differences between stable

Table II

<table>
<thead>
<tr>
<th>Protein name</th>
<th>Fraction</th>
<th>Total protein</th>
<th>Activity</th>
<th>Specific activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(0)τ</td>
<td>I</td>
<td>Lysate</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Ammonium sulfate</td>
<td>52</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Ni2+-NTA (1 ml)</td>
<td>8</td>
<td>47</td>
</tr>
<tr>
<td>N-Δ1τ</td>
<td>I</td>
<td>Lysate</td>
<td>1280</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Ammonium sulfate</td>
<td>220</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Ni2+-NTA (3 ml)</td>
<td>35</td>
<td>20</td>
</tr>
</tbody>
</table>

RESULTS

Expression and Purification of the C(0)τ and N-Δ1τ Proteins—We constructed plasmids PA1-C(0)τ (Fig. 1A) and PA1-N-Δ1τ (Fig. 1B), which encode C(0)τ and N-Δ1τ, respectively. Our nomenclature system for truncated fusion proteins indicates the number of terminal residues deleted following the Δ; the preceding N or C indicates the terminus from which the amino acids were deleted. The fusion peptide is located at the truncated terminus. N-Δ1τ, for example, indicates that one amino acid was deleted from the N terminus of the τ sequence and that the fusion peptide was added to the new N terminus. The expressed C(0)τ and N-Δ1τ represented ~5% of the total cell protein, as determined by densitometric scans of Coomassie-stained gels.

C(0)τ and N-Δ1τ were purified via Ni2+-NTA metal chelating chromatography (Table II). The hexahistidine sequence within the fusion peptide specifically interacts with Ni2+ chelated to the column resin. Lysates (FrI) were prepared from 21 g of C(0)τ or 50 g of N-Δ1τ expression cells. Both C(0)τ and N-Δ1τ were recovered at >85% purity after Ni2+-NTA chromatography. The activity peaks of the eluted fractions of both C(0)τ and N-Δ1τ corresponded to each of their protein peaks (data not shown). Both C(0)τ and N-Δ1τ were fully active compared with wild-type τ protein in DNA polymerization assays. C(0)τ and N-Δ1τ were the only biotinylated proteins in the corresponding eluted fractions examined by the biotin blot analysis (data not shown).

Limited Proteolysis of C(0)τ—Limited proteolyses were performed to identify protease-sensitive interdomain hinges of the τ protein. Eight different proteases that encompass a broad spectrum of substrate specificities were tested: chymotrypsin, endoprotease Glu-C (SV8), papain, subtilisin, trypsin, thermolysin, endoprotease Asp-N, and endoprotease Lys-C. We first investigated the effects of varying the protease: C(0)τ ratios and incubation times on the observed proteolytic products. Varying incubation times distinguished the initial cleavage products and also established the differences between stable

FIG. 2. Proteolysis of C(0)τ with chymotrypsin. C(0)τ was subjected to limited proteolysis by two concentrations of chymotrypsin for varying times. Each lane contains 3 μg of C(0)τ protein. After digestion, products were separated by 10–17.5% SDS-polyacrylamide gel and stained with Coomassie Blue. Arrows on the left indicate two examples of cleavage products (48 and 24 kDa) which become more intense with increased digestion time (arrows indicate position in lane 1; the same products migrate faster in following lanes because of electrophoresis irregularity). Lane 15, undigested C(0)τ.

FIG. 3. Biotin blots of C(0)τ and C-Δ213τ proteolysis products. After digestion, samples were boiled immediately with the addition of SDS sample buffer, resolved on 10–17.5% SDS-polyacrylamide gel, and stained gels. Arrows on the left indicate the bands (45 kDa, lane 9; 30 kDa, lane 1; 22 kDa, lane 1) selected for sequencing. B, C-Δ213τ was subjected to limited proteolysis with five proteases for several different times. Abbreviations used for proteases and their dilution (w/w) and digestion temperature are: C, chymotrypsin, 1:100 at 20 °C; Th, thermolysin, 1:2000 at 37 °C; S, subtilisin, 1:1500 at 20 °C; T, trypsin, 1:2000 at 37 °C; P, papain, 1:500 at 20 °C; SV, endoprotease Glu-C, 1:2000 at 37 °C. Lane 13, C(0)τ, no protease. Arrows on the left indicate the bands (45 kDa, lane 9; 30 kDa, lane 1; 22 kDa, lane 1) selected for sequencing.
and unstable fragments. Results from a typical experiment employing chymotrypsin proteolysis are shown in Fig. 2. At short incubation times, 56-, 52-, 48-, and 24-kDa products were observed along with full-length \(\tau \) (Fig. 3, lanes 1–3 and 8–10). At longer incubation times, the 56- and 52-kDa products were diminished, whereas the 48- and 24-kDa products and several small bands (\(<20 \text{kDa}\)) became more intense (Fig. 2, lanes 4–7 and 11–14).

Similar experiments were performed for six proteases, and optimal time points were selected for each of them. After separation on SDS-polyacrylamide gels, the digested products were transferred to membranes. Biotin blot analyses were used to identify terminal fragments (Fig. 3A). Several cleavage products resulted from each protease digestion. Several bands with similar mobilities were generated via digestion with different proteases, suggesting that certain regions of C(0)\(\tau \) are subject to cleavage by multiple proteases. For example, bands of roughly 38 kDa were obtained by digestion with thermolysin, papain, or subtilisin. Bands migrating at \(\sim30 \text{kDa} \) were obtained with either chymotrypsin or subtilisin, and products of about 22 kDa were obtained after digestion with chymotrypsin, SV8, or papain. These observations suggested that C(0)\(\tau \) contains several protease-sensitive regions.

To facilitate mapping of the cleavage sites closer to the N terminus of \(\tau \), C-D\(^{213} \), which is equivalent to the \(\gamma \) protease plus the fusion peptide at its C terminus, was subjected to limited proteolysis. The conditions for each protease were optimized as described above. Products with apparent molecular masses of 45 kDa were obtained after digestion with endoproteinase Asp-N, endoproteinase Lys-C, or chymotrypsin (Fig. 3B). These and other cleavage products vanished after longer endoproteinase Lys-C digestion because of excessive proteolysis. Intensely staining cleavage products of both 27 and 26 kDa were obtained by digestions with either endoproteinase Asp-N or papain. Products of about 8 kDa were obtained after digestion with either SV8 or chymotrypsin (Fig. 3B).

Seven biotinylated fragments were selected for N-terminal amino acid sequencing analysis for the identification of their cleavage sites. The 22- and 30-kDa chymotryptic fragments were chosen for analysis, as was the 38-kDa fragment resulting from digestion with papain (Fig. 3A). Several products obtained from some of the more specific proteases were also subjected to sequence analyses. These included the 27- and 45-kDa products generated via endoproteinase Asp-N treatment, as well as an 8-kDa product from the SV8 digestion (Fig. 3B). Further, a 20-kDa cleavage product generated by chymotrypsin digestion after prolonged incubation time (data not shown) was also evaluated. Eight corresponding cleavage sites were identified (Fig. 4). Cleavage sites N-terminal to amino acid residues 106 (Asp) and 109 (Asp) corresponded to endoproteinase Asp-N digestion products that migrated at about 45 kDa; residue 222 (Asp) was the proteolytic site resulting in the 27-kDa fragment (Fig. 3B). Papain cleaved between residues 382 (Ala) and 383 (Val) to generate the 38-kDa fragment (Fig. 3A). The 8-kDa fragment generated by SV8 (Fig. 3B) was due to cleavage between residues 407 (Glu) and 408 (Thr). The 30- and 22-kDa chymotryptic fragments (Fig. 3A) resulted from cleavage C-terminal to residues 413 (Leu) and 478 (Trp), respectively. The 20-kDa chymotryptic fragment was due to cleavage after residue 496 (Ala). These cleavage sites are consistent with the substrate specificities of the respective proteases used.

The probable cleavage site resulting in the 26-kDa endoproteinase Asp-N restriction product was deduced based on the substrate specificity of that protease and the distribution of aspartate residues in the sequence of \(\tau \). Taking an experimental error of \(\pm10\% \) for molecular mass determination via SDS-polyacrylamide gel electrophoresis into account, the cleavage site resulting in the 27-kDa fragment would be predicted to be roughly 9 residues C-terminal to that of the 26-kDa fragment (Asp\(^{229}\)). There are two aspartates C-terminal to Asp\(^{229}\), those at positions 229 and 245. Thus, the 26-kDa endoproteinase Asp-N fragment is likely due to cleavage N-terminal to Asp\(^{229}\). Similarly, in consideration of the substrate preferences of papain in light of the known cleavage site of the 27-kDa endoproteinase Asp-N product, it seems likely that the 26-kDa papain digestion product is due to cleavage of bond(s) involving Glu\(^{228}\) and/or Glu\(^{230}\). These probable cleavage sites (228, 229, and 230) together with the eight cleavage sites determined by sequence analysis all cluster at four regions of the \(\tau \) subunit: amino acid residues 106–109, 222–230, 383–413, and 478–496.

The N-terminal half of \(\tau \) shares high sequence similarity with \(\delta' \) (28–30), another component of the DNA polymerase \(\alpha \) complex. The crystal structure of \(\delta' \) contains three domains, and sequence...
alignment predicts a similar three-domain structure for the N-terminal half of \(\tau \) (30). The majority of the cleavage sites we observed agree and extend this prediction to a five domain model for \(\tau \) (see "Discussion" for detail): amino acid residues 1–179 as domain I, 180–221 as domain II, 230–382 as domain III, 413–496 as domain IV, and 497–643 as domain V (Fig. 4).

Expression and Purification of Biotin and Hexahistidine-tagged DnaX—C-\(\tau \), the unique C-terminal portion of \(\tau \)-,

expression was performed in HKGM buffer. A–C, sensorgrams of overlays of the indicated concentrations of \(\alpha \) injected over the immobilized C(0)-\(\tau \) (150 RU), N-\(\Delta413\tau \) (710 RU), and N-\(\Delta496\tau \) (34 RU) flow cells for 3 min at 25 \(\mu \)l/min, respectively. D, 720 RU of C(0)-\(\tau \) and 750 RU of C-\(\Delta147\tau \) were captured onto streptavidin flow cells, respectively. 50 nM of \(\alpha \) was injected over each of these two and the control flow cells in HKGM buffer at 2 \(\mu \)l/min for 15 min. E, 150 RU of N-\(\Delta1\tau \) were captured onto streptavidin flow cell. 20 nM of \(\alpha \) was injected over the flow cell in HKGM buffer at 25 \(\mu \)l/min for 4 min.

\[\text{Fig. 6. BIAcore analysis of the interaction of } \alpha \text{ with immobilized C(0)-}\tau, \text{N-}\Delta413\tau, \text{N-}\Delta496\tau, \text{C-}\Delta147\tau, \text{and N-}\Delta1\tau. } \]

Five biotinylated \(\tau \)-fusion proteins were captured onto the streptavidin chips as described under "Experimental Procedures." A streptavidin derivatized flow cell lacking bound \(\tau \) protein provided the blank control, which was subtracted from the data shown. The analysis of the interaction with \(\alpha \) was performed in HKGM buffer. A–C, sensorgrams of overlays of the indicated concentrations of \(\alpha \) injected over the immobilized C(0)-\(\tau \) (150 RU), N-\(\Delta413\tau \) (710 RU), and N-\(\Delta496\tau \) (34 RU) flow cells for 3 min at 25 \(\mu \)l/min, respectively. D, 720 RU of C(0)-\(\tau \) and 750 RU of C-\(\Delta147\tau \) were captured onto streptavidin flow cells, respectively. 50 nM of \(\alpha \) was injected over each of these two and the control flow cells in HKGM buffer at 2 \(\mu \)l/min for 15 min. E, 150 RU of N-\(\Delta1\tau \) were captured onto streptavidin flow cell. 20 nM of \(\alpha \) was injected over the flow cell in HKGM buffer at 25 \(\mu \)l/min for 4 min.
at over 65% purity as determined by scanning densitometry (Fig. 5). 11.5 mg of C-Δ147r, 8 mg of N-496r, and 5.3 mg of N-Δ413r were purified from 1250, 330, and 1200 mg of total protein from cell lysates, respectively. C-Δ147r, N-Δ413r, and N-496r were the only biotinylated proteins in the corresponding eluted fractions examined by the biotin blot analysis. Thus, the biotinylated r fusion proteins were presumed to be the only proteins captured onto the BIAcore sensor chip during the immobilization step.2 C-Δ147r is as active as C(0)r in DNA polymerization assays.

The C-terminal Domain of r Binds to a—The interaction between a and C(0)r was first assessed using BIAcore methodology. Streptavidin was chemically coupled to the CM5 sensor chip over the limits of the technique used. The differences observed between the two carefully performed studies are likely an indication of the in the determination of association and dissociation rates. The association rates were fast enough and the dissociation rates slow enough that both approached the limits of the technique used. The differences observed between the two carefully performed studies are likely an indication of the precision. The studies here are not intended to determine precise Kd values but to compare interaction quantitatively to be certain that significant binding energy is not being lost along with a deleted domain.

Table III

<table>
<thead>
<tr>
<th>τ protein</th>
<th>Association rate constant (ka)</th>
<th>Dissociation rate constant (kd)</th>
<th>Stoichiometry ratio (α/τ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(0)r</td>
<td>3.7 × 10^6 s⁻¹ M⁻¹</td>
<td>1.3 × 10⁻⁴ M s⁻¹</td>
<td>0.65</td>
</tr>
<tr>
<td>N-Δ1 r</td>
<td>9.5 × 10⁵ s⁻¹ M⁻¹</td>
<td><1 × 10⁻⁶ M s⁻¹</td>
<td>0.75</td>
</tr>
<tr>
<td>N-Δ413 r</td>
<td>2.8 × 10⁵ s⁻¹ M⁻¹</td>
<td>1 × 10⁻⁵ M s⁻¹</td>
<td>0.67</td>
</tr>
<tr>
<td>N-496 r</td>
<td>2.9 × 10⁶ s⁻¹ M⁻¹</td>
<td><1 × 10⁻⁶ M s⁻¹</td>
<td>0.65</td>
</tr>
<tr>
<td>C-Δ147 r</td>
<td>No detectable binding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The stoichiometry of α/τ was determined by the following equation: stoichiometry = α response units/τ response units × Mτ/Mα. In each case, molecular weight values corresponding to monomeric forms were used.
2. The koff cannot be determined from the dissociation phase because the derivative is too small. The limits were set according to the BIAcore System Manual.
3. The discrepancy between the 10 pm (for N-Δ1τ-α) obtained here and the 70 pm (for aΔ1τ-τ) previously reported (23) could be due to inaccuracies in the determination of association and dissociation rates. The association rates were fast enough and the dissociation rates slow enough that both approached the limits of the technique used. The differences observed between the two carefully performed studies are likely an indication of the precision. The studies here are not intended to determine precise Kd values but to compare interaction quantitatively to be certain that significant binding energy is not being lost along with a deleted domain.

DISCUSSION

We report here an effective approach to mapping heterologous protein-protein interacting domains. We improved upon our previously reported mapping method (23) by combining it with limited proteolysis to more precisely identify probable interdomain linkers. This modification improves the probability that the expressed proteins will contain intact domains. Using C-terminal biotin-tagged proteins in our limited proteolysis approach allowed us to distinguish terminal fragments from internal fragments by using streptavidin-conjugated detection reagents. The biotin tag also enabled rapid purification of the terminal fragment for sequence analysis and precise localization of the cleavage sites.

We chose eight proteases with different substrate specificities to identify potential interdomain hinges. As exposed sequences, interdomain hinges are generally susceptible to cleavage by more than one protease. Digestion was monitored as a function of time to help distinguish relatively stable products. Cleavage products common to more than one protease were selected for identification of the precise sites of cleavage. Eleven cleavage sites were obtained following N-terminal amino acid sequencing of the selected proteolysis products. The cleavage sites were clustered within four regions: 106–109, 222–230, 383–413, and 478–496.

The δ' subunit shares a 34% sequence similarity with the N-terminal region of both τ and γ and aligns to the N-terminal 370-amino acid sequence of DnaX proteins (28, 30), which corresponds to over half of the τ sequence. There are several known motifs conserved between these two proteins, including the Walker A (GXXXXGKT),3 Walker B (DEXX), zinc module (CXXCXXXCC), and SRC sequences (Fig. 4) (30). The δ' crystal structure showed three domains in a C-shaped configuration, suggesting that the N-terminal half of τ also contains a Walker A motif so it cannot bind ATP.

2 A portion of the same preparation of N-Δ413r used in BIAcore experiments was chromatographed over a soft link, soft release monomeric avidin column (Promega) equilibrated in Buffer containing 50 mM HEPES (pH 7.4), 100 mM sodium glutamate, 5% (v/v) glycerol, and 0.5 mM PMSF. The column was washed with five column volumes of the equilibration buffer. The bound protein was eluted from the column with 5 mM biotin in equilibration buffer. The N-Δ413r band was the only band detected in a Coomassie Blue-stained SDS-polyacrylamide gel electrophoresis of the eluted fractions.

3 δ' sequence has a clearly derivative but mutated Walker A motif.
three domains, based on their sequence homology (30). Their alignment suggested that α amino acid residues 1–179 were domain I and that residues 180–221 were domain II. Less certain was the assignment of domain III to the residues following 226. Our results support the prediction that the N-terminal end of τ and δ' have similar structures. One of the τ protein cleavage sites (Asp²²²-Gln²²³) is located within the stretch predicted to be a hinge between domains II and III. The following cleavage site (Ala³⁸²-Val³⁸³) occurs just 13 residues C-terminal to the end of the τ-δ' alignment and may define the C-terminal boundary of the third domain of τ. We observed no cleavage between domains I and II, suggesting that this hinge was not accessible for proteolysis under the conditions employed in these studies. Based on the most N-terminal cleavage site identified (Arg¹⁰⁵-Asp¹⁰⁶), we constructed a plasmid encoding τ amino acid residues 1–105. The resultant protein was not stable in expression cells (data not shown). Both the residue Asp¹⁰⁶ of τ and the corresponding residue Glu⁹⁰ of δ' are predicted to be in a similar position of a helical region revealed by the PHD program (data not shown). The residue Glu⁹⁰ is on the surface of domain I of δ' (30). Above results suggest that τ residues 1–105 do not form an intact structural domain by themselves.

Two cleavage sites (Glu⁴⁰⁷-Thr⁴⁰⁸ and Leu⁴¹³-Ala⁴¹⁴) occur at the C-terminal end of domain I of τ. These sites are conserved in common with the δ' protein cleavage sites (Ala³⁹²-Val³⁹³) and Leu⁴¹³-Ala⁴¹⁴. The presence of at least three cleavage sites within residues 1–110 suggests that our domain assignments for the C-terminal sequence accurately reflect both the structural and functional integrity of domain V. C-terminal tagged τ bound α with 1000-fold lower affinity, whereas tagging at the N terminus did not reduce α binding activity in the BIACore assay. This observation is consistent with localization of the τ binding sites for α at or near the C terminus of domain V.

Based on our proteolysis data and sequence alignment with the homologous protein δ', considered in light of the δ' crystal structure, we assigned five structural domains to the τ subunit. Final proof of the domain assignments awaits more complete determination of the structure of the τ-subunit.

Acknowledgment—We thank Dr. John Kuriyan for sharing the δ' structure and coordinates with us in advance of publication and Dr. Deborah Wilkinson-Fitzgerald for writing and editorial assistance on this and the following two papers.

REFERENCES