Advertisement

Evidence for a role of phosphatidylinositol 3-kinase in the regulation of glucose transport in Xenopus oocytes.

Open AccessPublished:October 28, 1994DOI:https://doi.org/10.1016/S0021-9258(18)47063-9
      This paper is only available as a PDF. To read, Please Download here.
      We have used two experimental approaches to examine the possible role of phosphatidylinositol 3-kinase (PI 3-kinase) in the regulation of glucose transport in oocytes isolated from Xenopus laevis. Incubation of oocytes with the PI 3-kinase inhibitor wortmannin inhibited insulin-like growth factor-1-stimulated deoxyglucose uptake. Half-maximal inhibition was observed at concentrations approximately 20 nM. Conversely, we also examined the effects of microinjection of synthetic peptides designed to interact with Src homology 2 domains of the regulatory subunit of PI 3-kinase on deoxyglucose transport in oocytes. We show that a bifunctional synthetic peptide containing two YMXM consensus sequences for binding to SH2 domains stimulated both PI 3-kinase activity and deoxyglucose transport when both tyrosine residues were phosphorylated. However, non-phosphorylated or bisphosphonotyrosine peptides with the identical amino acid sequence failed to stimulate transport or PI 3-kinase activity. Taken together, these data argue strongly for a role for PI 3-kinase in the regulation of glucose transport in oocytes.

      REFERENCES

        • Ahn N.G.
        • Seger R.
        • Bratlien R.L.
        • Diltz C.D.
        • Tonks N.K.
        • Krebs E.G.
        J. Biol. Chern. 1991; 266: 4220-4227
        • Auger K.R.
        • Carpenter C.L.
        • Shoelson S.E.
        • Piwnica-Worms H
        • Cantley L.C.
        J. Biol. Chem. 1992; 267: 5408-5415
        • Bimbaum M.J.
        • Haspel H.C.
        • Rosen O.M.
        Science. 1987; 235: 1495-1498
        • Cantley L.C.
        • Auger K.R.
        • Carpenter C.
        • Duckworth B.
        • Graziani A.
        • Kapeller R.
        • Soltoff S.
        Cell. 1991; 64: 281-302
        • Colville C.A.
        • Gould G.W.
        Gould G.W. Membrane Protein Expression Systems: A Users Guide. Portland Press, London1993: 243-274
        • Colville C.A.
        • Seatter M.J.
        • Jess T.J.
        • Gould G.W.
        • Thomas H.M.
        Biochem. J. 1993; 290: 701-706
        • Escobedo J.A.
        • Kaplan D.R.
        • Kavanaugh W.M.
        • Turck C.W.
        • Williams L.T.
        Mol. Cell. Biol. 1991; 11: 1125-1132
        • Flier J.S.
        • Mueckler M.M.
        • Usher P.
        • Lodish H.F.
        Science. 1987; 235: 1492-1495
        • Gomez N.
        • Cohen P.
        Nature. 1991; 353: 170-173
        • Gould G.W.
        • Gould G.W.
        • Holman G.D.
        Biochem. J. 1993; 295: 329-341
        • Gould G.W.
        • Lienhard G.E.
        Biochemistry. 1989; 28: 9447-9452
        • Gould G.W.
        • Thomas H.M.
        • Jess T.J.
        • Bell G.I.
        Biochemistry. 1991; 30: 5139-5145
        • Hainaut P.
        • Giorgetti S.
        • Kowalski A.
        • Van Obberghen E.
        Cell Regul. 1991; 2: 317-327
        • Herbst J.J.
        • Andrews G.
        • Contillo L.
        • Lamphere L.
        • Lienhard G.E.
        • Gibbs E.M.
        Biochemistry. 1994; 33: 9376-9381
        • Hiraki Y.
        • Rosen O.M.
        • Bimbaum M.J.
        J. Biol. Chem. 1988; 263: 13655-13662
        • Hiraki Y.
        • de Herreros A.G.
        • Bimbaum M.J.
        Proc. Natl. Acad. Sci. 1989; 86: 8252-8256
        • Janicot M.
        • Lane M.D.
        Proc. Natl. Acad. Sci. 1989; 86: 2642-2646
        • Jimenez-de-Asua L.
        • Rozengurt E.
        Nature. 1974; 251: 624-626
        • Lamphere M.
        • Carpenter C.L.
        • Sheng Z.
        • Kallen R.G.
        • Lienhard G.E.
        Am. J. Physiol. 1993; 266: E486-E4896
        • Kahn B.B.
        • Flier J.S.
        Diabetes Care. 1990; 13: 548-564
        • Kitagawa T.
        • Tanaka M
        • Akamatsu Y.
        Biochim. Biophys. Acta. 1989; 980: 100-108
        • Kletzien R
        • Perdue J.F.
        J. Biol. Chem. 1974; 249: 3366-3374
        • Kom L.J.
        • Siebel C.W.
        • McCormick F.
        • Roth R.A.
        Science. 1987; 236: 840-843
        • Krupka R.M.
        Biochemistry. 1971; 10: 1143-1153
        • Merrall N.W.
        • Plevin R.J.
        • Stokoe D.
        • Cohen P.
        • Nebreda A.R.
        • Gould G.W.
        Biochem. J. 1993; 295: 351-355
        • Okada T.
        • Sakuma L.
        • Fukui Y.
        • Hazeki O
        • Ui M.
        J. Biol. Chem. 1994; 269: 3563-3567
        • Pelech S.L.
        • Sanghera J.S.
        Trends Biochem. Sci. 1992; 17: 233-238
        • Rollins B.J.
        • Morrison E.D.
        • Usher P
        • Flier J.S.
        J. Biol. Chem. 1988; 263: 16523-16526
        • Ruderman N.B.
        • Kapeller R
        • White M.F.
        • Cantley L.C.
        Proc. Natl. Acad. Sci. 1990; 87: 8622-8626
        • Shoelson S.
        • Chatteijee S.
        • Chaudhuri M.
        • White M.F.
        Proc. Natl. Acad. Sci. 1992; 89: 2027-2031
        • Skolnik E-Y.
        • Lee C.-H.
        • Batzer A.
        • Vicentini L.M.
        • Zhou M.
        • Daly R.
        • Myers M.J.
        • Backer J.M.
        • Ullrich A.
        • White M.F.
        • Schlessinger J.
        EMBO J. 1993; 12: 1937-1946
        • Sturgill T.W.
        • Wu J.
        Biochim. Biophys. Acta. 1991; 1092: 350-357
        • Thomas G.
        Cell. 1992; 68: 1-4
        • Walsh J.P.
        • Caldwell K.K.
        • Majerus P.W.
        Proc. Natl. Acad. Sci. 1991; 88: 9184-9187
        • White M.F.
        • Kahn C.R.
        J. Biol. Chem. 1994; 269: 1-4