Advertisement

Crystal structure of oxygenated Scapharca dimeric hemoglobin at 1.7-A resolution.

      This paper is only available as a PDF. To read, Please Download here.
      The crystal structure of the cooperative dimeric hemoglobin from the blood clam Scapharca inaequivalvis has been determined in the oxygenated state and refined to an R-factor of 0.157 at 1.7-A resolution. The structure is very similar to the carbon monoxide-liganded form with subtle differences in ligand binding geometry. Oxygen binds to the heme iron in a bent conformation with Fe-O-O angles of 135 degrees and 150 degrees for the two subunits. These observed angles are lower than the equivalent angles in the carbon monoxide-liganded form and intermediate between the angles observed in structures of oxygenated sperm whale myoglobin and oxygenated human hemoglobin. This third high resolution structure of Scapharca dimeric hemoglobin permits a detailed analysis of the water structure in the highly hydrated interface between subunits.

      REFERENCES

        • Schachman H.K.
        J. Biol. Chem. 1988; 263: 18583-18586
        • Schirmer T.
        • Evans P.R.
        Nature. 1990; 343: 140-145
        • Johnson A.D.
        • Poteete A.R.
        • Lauer G.
        • Sauer R.T.
        • Ackers G.K.
        • Ptashne M.
        Nature. 1981; 294: 217-223
        • Phillips S.E.V.
        • Manfield I.
        • Parsons I.
        • Davidson B.E.
        • Rafferty J.B.
        • Somers W.S.
        • Margarita D.
        • Cohen G.N.
        • Saint-Girons I.
        • Stockley P.G.
        Nature. 1989; 341: 711-715
        • Perutz M.F.
        • Fermi G.
        • Luisi B.
        • Shaanan B.
        • Liddington R.C.
        Acc. Chem. Res. 1987; 20: 309-321
        • Ackers G.K.
        • Doyle M.L.
        • Myers D.
        • Daugherty M.A.
        Science. 1992; 255: 54-63
        • Royer Jr., W.E.
        Adv. Comp. Environ. Physiol. 1992; 13: 87-116
        • Ohnoki S.
        • Mitomi Y.
        • Hata R.
        • Satake K.
        J. Biochem. 1973; 73: 717-725
        • Furuta H.
        • Ohe M.
        • Kajita A.
        J. Biochem. 1977; 82: 1723-1730
        • Djangmah J.S.
        • Gabbott P.A.
        • Wood E.J.
        Comp Biochem. Physiol. 1978; 60: 245-250
        • Como P.F
        • Thompson E.O.P.
        Aust. J. Biol. Sci. 1980; 33: 643-652
        • Chiancone E.
        • Vecchini P.
        • Verzili D.
        • Ascoli F
        • Antonini E.
        J. Mol. Biol. 1981; 152: 577-592
        • San George R.C.
        • Nagel R.L.
        J. Biol. Chem. 1985; 260: 4331-4337
        • Borgese T.A.
        • Harrington J.P.
        • Hoffman D.
        • San George R.C.
        • Nagel R.L.
        Comp. Biochem. Physiol. 1987; 86: 155-165
        • Royer Jr., W.E.
        • Love W.E.
        • Fenderson F.F.
        Nature. 1985; 316: 277-280
        • Royer Jr., W.E.
        • Hendrickson W.A.
        • Chiancone E.
        Science. 1990; 249: 518-521
        • Royer Jr., W.E.
        J. Mol. Biol. 1994; 235: 657-681
        • Hendrickson W.A.
        Methods Enzymol. 1985; 115: 252-270
        • Briinger A.T.
        • Kuriyan J.
        • Karplus M.
        Science. 1987; 235: 458-460
        • Jones T.A.
        • Zou J.-Y.
        • Cowan S.W.
        • Kjeldgaard M.
        Acta Crystallogr. 1991; 47: 110-119
        • Royer Jr., W.E.
        • Hendrickson W.A.
        • Chiancone E.
        J. Biol. Chem. 1989; 264: 21052-21061
        • Briinger A.T.
        • Krukowski A.
        • Erickson J.W.
        Acta Crystallogr. 1990; 46: 585-593
        • Jameson G.B.
        • Molinaro FS.
        • Ibers J.A.
        • Collman J.P.
        • Brauman J.I.
        • Rose E.
        • Suslick K.S.
        J. Am. Chem. Soc. 1980; 102: 3224-3237
        • Phillips S.E.V.
        J. Mol. Biol. 1980; 142: 531-554
        • Luzzati P.V.
        Acta Crystallogr. 1952; 5: 802-810
        • Bernstein F.C.
        • Koetzle T.F
        • Williams B.J.B.
        • Meyer Jr., E.F.
        • Brice M.D.
        • Rodgers J.R.
        • Kennard O.
        • Shimanouchi T.
        • Tasmui M.
        J. Mol. Biol. 1977; 112: 535-542
        • Derewenda Z.
        • Dodson G.
        • Emsley P.
        • Harris D.
        • Nagai K.
        • Perutz M.
        • Reynaud J.-P.
        J. Mol. Biol. 1990; 211: 515-519
        • Kuriyan J.
        • Wilz S.
        • Karplus M.
        • Petsko G.A.
        J. Mol. Biol. 1986; 192: 133-154
        • Collman J.P.
        • Brauman J.I.
        • Halbert T.R.
        • Suslick K.S.
        Proc. Natl. Acad. Sci. 1976; 73: 3333-3337
        • Rohlfs R.J.
        • Mathews A.J.
        • Carver T.E.
        • Olson J.S.
        • Springer B.A.
        • Egeberg K.D.
        • Sligar S.G.
        J. Biol. Chem. 1990; 265: 3168-3176
        • Wyman J.
        • Bishop G.
        • Richey B.
        • Spokane R.
        • Gill S.
        Biopolymers. 1982; 21: 1735-1747
        • Antonini E.
        • Ascoli F.
        • Brunori M.
        • Chiancone E.
        • Verzili D.
        • Morris R.J.
        • Gibson Q.H.
        J. Biol. Chem. 1984; 259: 6730-6738
        • Shaanan B.
        J. Mol. Biol. 1983; 171: 31-59
        • Phillips S.E.V.
        • Schoenbom B.P.
        Nature. 1981; 292: 81-82
        • Briinger A.T.
        • Karplus M.
        Proteins. 1988; 4: 148-156
        • Quillin M.L.
        • Arduini R.M.
        • Olson J.S.
        • Phillips Jr., G.N.
        J. Mol. Biol. 1993; 234: 140-155