Advertisement
Journal Article| Volume 254, ISSUE 14, P6528-6537, July 25, 1979

Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions.

Open AccessPublished:July 25, 1979DOI:https://doi.org/10.1016/S0021-9258(18)50400-2
      This paper is only available as a PDF. To read, Please Download here.
      The observed equilibrium constants (Kobs) of the creatine kinase (EC 2.7.3.2), myokinase (EC 2.7.4.3), glucose-6-phosphatase (EC 3.1.3.9), and fructose-1,6-diphosphatase (EC 3.1.3.11) reactions have been determined at 38 degrees C, pH 7.0, ionic strength 0.25, and varying free magnesium concentrations. The equilibrium constant (KCK) for the creatine kinase reaction defined as: KCK = [sigma ATP] [sigma creatine] divided by ([sigma ADP] [sigma creatine-P] [H+]) was measured at 0.25 ionic strength and 38 degrees C and was shown to vary with free [Mg2+]. The value was found to be 3.78 x 10(8) M-1 at free [Mg2+] = 0 and 1.66 x 10(9) M-1 at free [Mg2+] = 10(-3) M. Therefore, at pH 7.0, the value of Kobs, defined as Kobs = KCK[H+] = [sigma ATP] [sigma creatine] divided by ([sigma ADP] [sigma creatine-P] was 37.8 at free [Mg2+] = 0 and 166 at free [Mg2+] = 10(-3) M. The Kobs value for the myokinase reaction, 2 sigma ADP equilibrium sigma AMP + sigma ATP, was found to vary with free [Mg2+], being 0.391 at free [Mg2+] = 0 and 1.05 at free [Mg2+] = 10(-3) M. Taking the standard state of water to have activity equal to 1, the Kobs of glucose-6-P hydrolysis, sigma glucose-6-P + H2O equilibrium sigma glucose + sigma Pi, was found not to vary with free [Mg2+], being 110 M at both free [Mg2+] = 0 and free [Mg2+] = 10(-3) M. The Kobs of fructose-1,6-P2 hydrolysis, sigma fructose-1,6-P2 equilibrium sigma fructose-6-P + sigma Pi, was found to vary with free [Mg2+], being 272 M at free [Mg2+] = 0 and 174 M at free [Mg2+] = 0.89 x 10(-3) M.

      REFERENCES

        • Guynn R.W.
        • Veech R.L.
        J. Biol. Chem. 1973; 248: 6966-6972
        • Guynn R.W.
        • Webster Jr., L.T.
        • Veech R.L.
        J. Biol. Chem. 1974; 249: 3248-3254
        • Lowry O.H.
        • Passonneau J.V.
        in A Flexible System of Enzymatic Analysis. Academic Press, New York1972: 209-218
        • Lamprecht W.
        • Stein P.
        Bergmeyer H.U. in Methods of Enzymatic Analysis. Academic Press, New York1965: 610-616
        • Bernt E.
        • Bergmeyer H.U.
        • Möellering
        Bergmeyer H.U. in Methods of Enzymatic Analysis. Academic Press, New York1965: 407-410
        • Veech R.L.
        • Guynn R.
        • Veloso D.
        Biochem. J. 1972; 127: 387-397
        • Hohorst H.J.
        Bergmeyer H.U. in Methods of Enzymatic Analysis. Academic Press, New York1965: 134-138
        • Slein M.W.
        Bergmeyer H.U. in Methods of Enzymatic Analysis. Academic Press, New York1965: 117-123
        • Guynn R.W.
        • Veloso D.
        • Veech R.L.
        Anal. Biochem. 1972; 45: 277-285
        • Veloso D.
        • Guynn R.W.
        • Oskarsson M.
        • Veech R.L.
        J. Biol. Chem. 1973; 248: 4811-4819
        • Phillips R.C.
        • George S.J.P.
        • Rutman R.J.
        Biochemistry. 1963; 2: 501-508
        • Smith R.M.
        • Alberty R.A.
        J. Am. Chem. Soc. 1956; 78: 2376-2380
        • Phillips R.C.
        • George S.J.P.
        • Rutman R.J.
        J. Am. Chem. Soc. 1966; 88: 2631-2640
        • Smith R.M.
        • Alberty R.A.
        J. Phys. Chem. 1956; 60: 180-184
        • O҆Sullivan W.J.
        Dawson R.M.C. Elliott D.C. Elliot W.H. Jones K.M. in Data for Biochemical Research. Oxford University Press, London1972: 432
        • McElroy W.D.
        • Glass B.
        Phosphorus Metabolism. Johns Hopkins University Press, Baltimore1951
        • Martell A.E.
        • Schwarzenbach G.
        Helv. Chim. Acta. 1956; 39: 653-661
        • Trevelyan W.E.
        • Mann P.F.E.
        • Harrison J.S.
        Arch. Biochem. Biophys. 1952; 39: 440-449
        • O҆Sullivan W.J.
        Dawson R.M.C. Elliot D.C. Elliot W.H. Jones K.M. in Data for Biochemical Research. Oxford University Press, London1972: 430
        • Cannan R.K.
        • Kibrick A.
        J. Am. Chem. Soc. 1938; 60: 2314-2320
      1. Sober H.A. Handbook of Biochemistry. Chemical Rubber Co., Cleveland2009: J238
        • Guynn R.W.
        • Gelberg H.J.
        • Veech R.L.
        J. Biol. Chem. 1973; 248: 6957-6965
        • Alberty R.A.
        J. Biol. Chem. 1969; 244: 3290-3302
        • Wyman J.
        Adv. Protein Chem. 1948; 4: 407-531
        • Noda L.
        • Kuby S.A.
        • Lardy H.A.
        J. Biol. Chem. 1954; 210: 83-95
      2. Long C. Biochemists Handbook. E. & F. N. Spon, Ltd., London1968: 42-43
      3. Long C. Biochemists Handbook. E. & F. N. Spon, Ltd., London1968: 96
        • Morrison J.F.
        • White A.
        Eur. J. Biochem. 1967; 3: 145-152
        • Haldane J.B.S.
        Enzymes. Longmans Green & Co., Ltd., London1930: 209-218
        • Nihei T.
        • Noda L.
        • Morales M.F.
        J. Biol. Chem. 1961; 236: 3203-3209
        • Morrison J.F.
        • James E.
        Biochem. J. 1965; 97: 37-52
        • Brownlee K.A.
        Statistical Theory and Methodology in Science and Engineering. John Wiley & Sons, New York2009: 329-346
        • Brownlee K.A.
        Statistical Theory and Methodology in Science and Engineering. John Wiley & Sons, New York1960: 225-226
        • Brownlee K.A.
        Statistical Theory and Methodology in Science and Engineering. John Wiley & Sons, New York1960: 235-239
        • Gellert M.
        • Sturtevant J.M.
        J. Am. Chem. Soc. 1960; 82: 1497-1499
        • Mahowald T.A.
        • Noltmann E.A.
        • Kuby S.A.
        J. Biol. Chem. 1962; 237: 1535-1548
        • Blair J.McD.
        Eur. J. Biochem. 1970; 13: 384-390
        • Bowen W.J.
        • Kerwin T.D.
        Arch. Biochem. Biophys. 1956; 64: 278-284
        • Guinodman L.M.
        Biokhimia. 1954; 19: 666-676
        • Atkinson M.R.
        • Johnson E.
        • Morton R.K.
        Biochem. J. 1961; 79: 12-15
        • Meyerhof O.
        • Green H.J.
        J. Biol. Chem. 1949; 178: 655-667
        • Stiller M.
        • Diamondstone T.
        • Witonsky R.
        • Baltimore D.
        • Rutman R.J.
        • George P.
        Fed. Proc. 1965; 24: 363
        • Flodgaard H.
        • Fleron P.
        J. Biol. Chem. 1974; 249: 3465-3474
        • Alberty R.A.
        J. Biol. Chem. 1968; 243: 1337-1343
        • Wood H.G.
        • Davis J.J.
        • Lochmiiller H.
        J. Biol. Chem. 1966; 241: 5692-5704
        • Schuegraf A.
        • Ratner S.
        • Warner R.C.
        J. Biol. Chem. 1960; 235: 3597-3602
        • Benzinger T.H.
        • Hems R.
        Proc. Natl. Acad. Sci. 1956; 42: 896-900
        • Benzinger T.
        • Kitzinger C.
        • Hems R.
        • Burton K.
        Biochem. J. 1959; 71: 400-407
        • Arion W.J.
        • Nordlie R.C.
        J. Biol. Chem. 1964; 239: 2752-2757
        • Stetten M.R.
        • Taft H.L.
        J. Biol. Chem. 1964; 239: 4041-4046
        • Rafter G.W.
        J. Biol. Chem. 1960; 235: 2475-2477
        • Segal H.L.
        J. Am. Chem. Soc. 1959; 81: 4047-4050
        • Hass L.F.
        • Byrne W.L.
        J. Am. Chem. Soc. 1960; 82: 947-954
        • Reeves R.E.
        • South D.J.
        • Blytt H.J.
        • Warren L.G.
        J. Biol. Chem. 1974; 249: 7737-7741
        • O҆Brien W.E.
        • Bowien S.
        • Wood H.G.
        J. Biol. Chem. 1975; 250: 8690-8695
        • Lawson J.W.R.
        • Guynn R.W.
        • Cornell N.
        • Veech R.L.
        Hanson R.W. Mehlman M.A. in Gluconeogenesis. John Wiley & Sons, New York1976: 481-512
        • Robbins E.A.
        • Boyer P.D.
        J. Biol. Chem. 1957; 224: 121-135
        • Hanson R.L.
        • Rudolph F.B.
        • Lardy H.A.
        J. Biol. Chem. 1973; 248: 7852-7859