Advertisement

An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase.

Open AccessPublished:December 05, 1991DOI:https://doi.org/10.1016/S0021-9258(18)54473-2
      This paper is only available as a PDF. To read, Please Download here.
      The condensing peptide forming multienzyme of gramicidin S synthetase (gramicidin S synthetase 2) was specifically labeled at its putative thiotemplate sites for L-valine and L-leucine by covalent incorporation of the 14C-labeled substrate amino acids. The thioester complexes of the multienzyme were digested with CNBr, Staphylococcus aureus V8 protease, and pepsin. Reaction center peptides containing the [14C]valine and [14C]leucine labels were isolated in pure form. They show a high degree of sequence similarity and contain the same consensus sequence LGGH/DXL. The labels were eliminated in the first Edman degradation step. A dehydroalanine was identified which can originate from either a cysteine or a serine. The comparison of the chemical results with the deduced amino acid sequence of the grsB gene encoding the gramicidin S synthetase 2 revealed that 4 such motifs are located within the gene structure, each of them being localized in the 3'-terminal region of one of 4 gene segments grsB1-B4. They have a size of approximately 2 kilobases and presumably code for the 4 amino acid activating domains of the synthetase. Surprisingly a serine was found at each putative substrate amino acid-binding position instead of a cysteine as postulated by the thiotemplate mechanism. Therefore the data suggest that active serine residues are involved in nonribosomal peptide syntheses of microbial peptides.

      REFERENCES

        • Lipmann F.
        McElroy W.D. Glass B. The Mechanism of Enzyme Action. John Hopkins University Press, Baltimore1954: 599
        • Lipmann F.
        Accts. Chem. Res. 1973; 6: 361-367
        • Laland S.G.
        • Zimmer T.-L.
        Essays Biochem. 1973; 9: 31-57
        • Kurahashi K.
        Annu. Rev. Biochem. 1974; 43: 445-459
        • Kleinkauf H.
        • von Döhren H.
        Eur. J. Biochem. 1990; 192: 1-15
        • Kleinkauf H.
        • Roskoski Jr., R.
        • Lipmann F.
        Proc. Natl. Acad. Sci. U. S. A. 1971; 68: 2069-2072
        • Lipmann F.
        • Gevers W.
        • Kleinkauf H.
        • Roskoski Jr., R.
        Adv. Enzymol. 1971; 35: 1-34
        • Kleinkauf H.
        • Koischwitz H.
        Prog. Mol. Subcell. Biol. 1978; 6: 59-112
        • Kleinkauf H.
        • Koischwitz H.
        Bisswanger H. Schmincke-Ott E. Multifunctional Proteins. J. Wiley & Sons, New York1980: 217-233
        • Vater J.
        Kleinkauf H. von Döhren H. Biochemistry of Peptide Antibiotics. Walter de Gruyter, Berlin1990: 33-55
      1. Chiu, C.-W. (1984) Thesis, Technical University of Berlin

        • Vater J.
        • Mallow N.
        • Gerhardt S.
        • Gadow A.
        • Kleinkauf H.
        Biochemistry. 1985; 24: 2022-2027
        • Gevers W.
        • Kleinkauf H.
        • Lipmann F.
        Proc. Natl. Acad. Sci. U. S. A. 1968; 60: 269-276
        • Vater J.
        • Schlumbohm W.
        • Palacz Z.
        • Salnikow J.
        • Gadow A.
        • Kleinkauf H.
        Eur. J. Biochem. 1987; 163: 297-302
        • Gevers W.
        • Kleinkauf H.
        • Lipmann F.
        Proc. Natl. Acad. Sci. U. S. A. 1969; 65: 1335-1342
        • Vater J.
        • Schlumbohm W.
        • Salnikow J.
        • Irrgang K.-D.
        • Miklus M.
        • Choli T.
        • Kleinkauf H.
        Biol. Chem. Hoppe-Seyler. 1989; 370: 1013-1018
        • Ashman K.
        • Bosserhof A.
        Tschesche H. Modern Methods in Analytical Protein Chemistry. 2. Walter de Gruyter, Berlin1985: 155-171
        • Hewick R.M.
        • Hunkapillar M.W.
        • Hood L.E.
        • Dreyer W.J.
        J. Biol. Chem. 1981; 256: 7990-7997
        • Koischwitz H.
        • Kleinkauf H.
        Biochim. Biophys. Acta. 1976; 429: 1052-1061
        • Schroeder W.A.
        • Shelton J.B.
        • Shelton J.R.
        Arch. Biochem. Biophys. 1969; 130: 551-556
        • Cronan Jr., J.E.
        • Li W.-B.
        • Coleman R.
        • Narasimhan M.
        • de Mendoza D.
        • Schwab J.M.
        J. Biol. Chem. 1988; 263: 4641-4646
        • Krätzschmar J.
        • Krause M.
        • Marahiel M.A.
        J. Bacteriol. 1989; 171: 5422-5429
        • Weckermann R.
        • Fürbaß R.
        • Marahiel M.A.
        Nucleic Acids Res. 1988; 16: 11841
        • MacCabe A.P.
        • van Liempt H.
        • Palissa H.
        • Unkles S.E.
        • Riach M.B.R.
        • Pfeifer E.
        • von Döhren H.
        • Kinghorn J.R.
        J. Biol. Chem. 1991; 266: 12646-12654
        • Rusnak F.
        • Sakaitani M.
        • Drueckhammer D.
        • Reichert J.
        • Walsh C.T.
        Biochemistry. 1991; 30: 2916-2927
        • de Wet J.R.
        • Wood K.V.
        • Deluca M.
        • Helinski D.R.
        • Subramani S.
        Mol. Cell. Biol. 1987; 7: 725-737
        • Lozoya E.
        • Hoffmann H.
        • Douglas C.
        • Schulz W.
        • Scheel D.
        • Hahlbrock K.
        Eur. J. Biochem. 1988; 176: 661-667
        • Kanda M.
        • Hori K.
        • Kurotsu T.
        • Miura S.
        • Saito Y.
        J. Biochem. (Tokyo). 1984; 96: 701-711
        • Schlumbohm W.
        • Vater J.
        • Kleinkauf H.
        Biol. Chem. Hoppe-Seyler. 1985; 366: 925-930
        • Frøshov O.
        • Zimmer T.-L.
        • Laland S.G.
        FEBS Lett. 1970; 7: 68-71
        • Gilhuus-Moe C.C.
        • Kristensen T.
        • Bredesen J.E.
        • Zimmer T.-L.
        • Laland S.G.
        FEBS Lett. 1970; 7: 287-290
        • Kleinkauf H.
        • Gevers W.
        • Roskoski Jr., R.
        • Lipmann F.
        Biochem. Biophys. Res. Commun. 1970; 41: 1218-1222
        • Ishihara H.
        • Endo Y.
        • Shimura K.
        FEBS Lett. 1975; 50: 43-46
        • Roland I.
        • Frøshov O.
        • Laland S.G.
        FEBS Lett. 1975; 60: 305-308
        • Skarpeid H.-J.
        • Zimmer T.-L.
        • Shen B.
        • von Dohren H.
        Eur. J. Biochem. 1990; 187: 627-633
        • Skarpeid H.-J.
        • Zimmer T.-L.
        • von Dohren H.
        Eur. J. Biochem. 1990; 189: 517-522
        • Smith D.J.
        • Earl A.J.
        • Turner G.
        EMBO J. 1990; 9: 2743-2750
        • Díez B.
        • Gutiérrez S.
        • Barredo J.L.
        • van Solingen P.
        • van der Voort L.H.M.
        • Martín J.F.
        J. Biol. Chem. 1990; 265: 16358-16365
        • Guitérrez S.
        • Díez B.
        • Montenegro E.
        • Martín J.F.
        J. Bacteriol. 1991; 173: 2354-2365
        • Gushima H.
        • Yasuda S.
        • Soeda E.
        • Yokota M.
        • Kondo M.
        • Kimura A.
        Nucleic Acids Res. 1984; 12: 9299-9307
        • Watanabe K.
        • Yamano Y.
        • Murata K.
        • Kimura A.
        Nucleic Acids Res. 1986; 14: 4393-4400
        • Yan N.
        • Meister A.
        J. Biol. Chem. 1990; 265: 1588-1593
        • Hale R.S.
        • Jordan K.N.
        • Leadley P.F.
        FEBS Lett. 1987; 224: 133-136
        • Vanaman T.C.
        • Wakil S.J.
        • Hill R.L.
        J. Biol. Chem. 1968; 243: 6420-6431
        • Schreckenbach T.
        • Wobser H.
        • Lynen F.
        Eur. J. Biochem. 1977; 80: 13-23
        • Kuo T.M.
        • Ohlrogge J.B.
        Arch. Biochem. Biophys. 1984; 234: 290-296
        • Mohamed A.H.
        • Chirala S.S.
        • Mody N.H.
        • Huang W.-Y.
        • Wakil S.J.
        J. Biol. Chem. 1988; 263: 12315-12325
        • Chang S.-I.
        • Hammes G.G.
        Biochemistry. 1988; 27: 4753-4760
        • Chirala S.S.
        • Kasturi R.
        • Pazirandeh M.
        • Stolow D.T.
        • Huang W.-Y.
        • Wakil S.J.
        J. Biol. Chem. 1989; 264: 3750-3757
        • Poulose A.J.
        • Bonsall R.F.
        • Kolattukudy P.E.
        Arch. Biochem. Biophys. 1984; 230: 117-128
        • Wittkowski A.
        • Naggert J.
        • Mikkelsen J.
        • Smith S.
        Eur. J. Biochem. 1987; 165: 601-606
        • Schweizer M.
        • Takabayashi K.
        • Laux T.
        • Beck K.F.
        • Schreglmann R.
        Nucleic Acids Res. 1988; 17: 567-586
        • McCarthy A.D.
        • Aitken A.
        • Hardie D.G.
        Eur. J. Biochem. 1983; 136: 501-508
        • Bibb M.J.
        • Biro S.
        • Motamedi H.
        • Collins J.F.
        • Hutchinson C.R.
        EMBO J. 1989; 8: 2727-2736
        • Sherman D.H.
        • Malpartida F.
        • Bibb M.J.
        • Kieser H.M.
        • Bibb M.J.
        • Hopwood D.A.
        EMBO J. 1989; 8: 2717-2725
        • Cortes J.
        • Haydock S.F.
        • Roberts G.A.
        • Bevitt D.J.
        • Leadley P.F.
        Nature. 1990; 348: 176-178
        • Schweizer M.
        • Roberts L.M.
        • Höltke H.-J.
        • Takabayashi K.
        • Höllerer E.
        • Hoffmann B.
        • Müller G.
        • Köttig H.
        • Schweizer E.
        Mol. Gen. Genet. 1986; 203: 479-486
        • Amy C.M.
        • Witkowski A.
        • Naggert J.
        • Williams B.
        • Randhawa Z.
        • Smith S.
        Proc. Natl. Acad. Sci. U. S. A. 1989; 86: 3114-3118
        • Mikkelsen J.
        • Højrup P.
        • Rasmussen M.M.
        • Roepstorff P.
        • Knudsen J.
        Biochem. J. 1985; 327: 21-27
        • Warden C.H.
        • Langner C.A.
        • Gordon J.I.
        • Taylor B.A.
        • McLean J.W.
        • Lusis A.J.
        J. Biol. Chem. 1989; 264: 21573-21581