Advertisement

The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase.

Open AccessPublished:October 25, 1991DOI:https://doi.org/10.1016/S0021-9258(18)54882-1
      This paper is only available as a PDF. To read, Please Download here.
      The hypothesis that the last step in the biosynthesis of 4,7,10,13,16,19-22:6 from linolenate is catalyzed by an acyl-CoA-dependent 4-desaturase has never been evaluated by direct experimentation. When rat liver microsomes were incubated with [1-14C]7,10,13,16,19-22:5, under conditions where linoleate was readily desaturated to 6,9,12-18:3, it was never possible to detect the product of the putative 4-desaturase. In the presence of malonyl-CoA, 7,10,13,16,19-22:5 was sequentially chain-elongated to 9,12,15,18,21-24:5, followed by its desaturation at position 6 to give 6,9,12,15,18,21-24:6. Microsomes desaturated 9,12,15,18,21-24:5 at rates similar to those observed for metabolizing linoleate to 6,9,12-18:3. Rat hepatocytes metabolize [1-14C]7,10,13,16,19-22:5 to 22:6(n-3), but in addition, it was possible to detect small amounts of esterified 24:5(n-3) and 24:6(n-3) in phospholipids, which is a finding consistent with their role as obligatory intermediates in 22:6(n-3) biosynthesis. When 3-14C-labeled 24:5(n-3) or 24:6(n-3) were incubated with hepatocytes, only a small amount of either substrate was esterified. [3-14C] 24:5(n-3) was metabolized both by beta-oxidation to 22:5(n-3) and by serving as a precursor for the biosynthesis of 24:6(n-3) and 22:6(n-3). The primary metabolic fate of [3-14C]24:6(n-3) was beta-oxidation to 22:6(n-3), followed by its acylation into membrane lipids. Our results thus document that 22:5(n-3) is the precursor for 22:6(n-3) but via a pathway that is independent of a 4-desaturase. This pathway involves the microsomal chain elongation of 22:5(n-3) to 24:5(n-3), followed by its desaturation to 24:6(n-3). This microsomal product is then metabolized, via beta-oxidation, to 22:6(n-3).

      REFERENCES

        • Klenk E.
        • Mohrhauer H.
        Hoppe-Seyler's Z. Physiol. Chem. 1960; 320: 218-232
        • Mead J.
        Prog. Chem. Fats Other Lipids. 1968; 9: 161-192
        • Brenner R.R.
        Prog. Lipid Res. 1981; 20: 41-47
        • Dunbar L.M.
        • Bailey J.M.
        J. Biol. Chem. 1975; 250: 1152-1153
        • Maeda M.
        • Doi O.
        • Akamatsu Y.
        Biochim. Biophys. Acta. 1978; 530: 153-164
        • Okayasu T.
        • Nagao M.
        • Ishibashi T.
        • Imai V.
        Arch. Biochem. Biophys. 1981; 206: 21-28
        • Stoffel W.
        Hoppe-Seyler's Z. Physiol. Chem. 1963; 333: 71-81
        • Sprecher H.
        • Lee C.-J.
        Biochim. Biophys. Acta. 1975; 388: 113-125
        • Pugh E.L.
        • Kates M.
        J. Biol. Chem. 1977; 252: 68-73
        • Carpenter M.P.
        Biochim. Biophys. Acta. 1971; 231: 52-79
        • Ayala S.
        • Gaspar G.
        • Brenner R.R.
        • Kunau W.H.
        J. Lipid Res. 1973; 14: 296-305
        • Osbond J.M.
        • Philpott P.G.
        • Wickens J.S.
        J. Chem. Soc. 1961; : 2779-2787
        • Sprecher H.
        • Sankarappa S.K.
        Methods Enzymol. 1982; 86: 357-366
        • Crossland R.K.
        • Servis K.L.
        J. Org. Chem. 1970; 35: 3195-3196
        • Baumann W.J.
        • Mangold H.K.
        J. Lipid Res. 1968; 9: 287
        • Bernert Jr., J.T.
        • Sprecher H.
        Biochim. Biophys. Acta. 1975; 398: 354-363
        • Seglen P.
        Methods Cell Biol. 1976; 13: 29-83
        • Voss A.C.
        • Sprecher H.
        Biochim. Biophys. Acta. 1988; 958: 153-162
        • Schulz H.
        • Kunau W.H.
        Trends Biochem. Sci. 1987; 12: 403-406
        • Kunau W.H.
        • Bartnik F.
        Eur. J. Biochem. 1974; 48: 311-318
        • Grønn M.
        • Christensen E.
        • Hagve T.-A.
        • Christophersen B.O.
        Biochim. Biophys. Acta. 1991; 1081: 85-91
        • Ludwig S.A.
        • Sprecher H.
        Arch. Biochem. Biophys. 1979; 197: 331-341
        • Pollard M.R.
        • Gunstone F.D.
        • Morris L.J.
        • James A.T.
        Lipids. 1980; 15: 690-693
        • Verdino B.
        • Blank M.L.
        • Privett O.S.
        • Lundberg W.O.
        J. Nutr. 1964; 83: 234-238
        • Sprecher H.
        Biochim. Biophys. Acta. 1967; 144: 296-304
        • Sprecher H.
        Biochim. Biophys. Acta. 1968; 152: 519-530
        • Stoffel W.
        • Ecker W.
        • Assad H.
        • Sprecher H.
        HoppeSeyler's Z. Physiol. Chem. 1970; 351: 1545-1554
        • Fischer S.
        • Vischer A.
        • Preac-Mursic V.
        • Weber P.C.
        Prostaglandins. 1987; 34: 367-375
        • Hiltunen J.K.
        • Kärki T.
        • Hassinen I.E.
        • Osmundsen H.
        J. Biol. Chem. 1986; 261: 16484-16493
        • Hovik R.
        • Osmundsen H.
        Biochem. J. 1987; 247: 531-535
        • Martinez M.
        Lipids. 1989; 24: 261-265
        • Rosenthal M.D.
        • Garcia M.C.
        • Jones M.R.
        • Sprecher H.
        Biochim. Biophys. Acta. 1991; 1083: 29-36
        • Bernert Jr., J.T.
        • Sprecher H.
        J. Biol. Chem. 1977; 252: 6736-6744
        • Prasad M.R.
        • Nagai M.N.
        • Ghesquier D.
        • Cook L.
        • Cinti D.L.
        J. Biol. Chem. 1986; 261: 8213-8217
        • Mohammed B.S.
        • Hagve T.-A.
        • Sprecher H.
        Lipids. 1990; 25: 854-858