In Vitro Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.| Volume 262, ISSUE 10, P4486-4491, April 05, 1987

Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effects of the concentration and type of detergent.

      This paper is only available as a PDF. To read, Please Download here.
      We have established the generality of using detergents for facilitating the reactivation of 6 M guanidinium chloride-denatured rhodanese that was recently described for the nonionic detergent lauryl maltoside (LM) (Tandon, S., and Horowitz, P. (1986) J. Biol. Chem. 261, 15615-15618). We report here that not only LM but other nonionic as well as ionic and zwitterionic detergents also have favorable effects in reactivating the denatured enzyme. Not all detergents are useful, and the favorable effects occur over a limited concentration range. Above and below that range there is little or no effect. Zwittergents, which represent a homologous series with varying critical micelle concentrations (CMCs) are effective only above their CMCs. Induction phases occur in the progress curves of rhodanese refolded in the presence of the effective detergents, suggesting the presence of refolding intermediates that are apparently stabilized by detergent interactions. Gel filtration chromatography of rhodanese with and without LM suggests that even though the renaturation of the denatured enzyme requires detergent at concentrations above its CMC, the enzyme does not bind an amount of detergent equivalent to a micelle. It is suggested that renaturation of other proteins might also be assisted by inclusion of “nondenaturing” detergents, although the optimal conditions will have to be determined for each individual case.

      REFERENCES

        • Jaenicke R.
        • Rudolph R.
        Jaenicke R. Proceedings of the 28th Conference of German Biochemical Society. Elsevier/North-Holland Biomedical Press, Amsterdam1980: 525-548
        • Duda C.T.
        • Light A.
        J. Biol. Chem. 1982; 257: 9866-9871
        • Bergsma J.
        J. Mol. Biol. 1975; 98: 637-643
        • Ploegman V.H.
        • Drent G.
        • Kalk K.H.
        • Hol W.G.V.
        • Heinrikson R.L.
        • Keim P.
        • Weng L.
        • Russell J.
        Nature. 1978; 273: 124-129
        • Hoi W.G.J.
        • Lijk L.J.
        • Kalk K.H.
        Fund. Appl. Toxicol. 1983; 3: 370-376
        • Boggaram V.
        • Horowitz P.
        • Waterman M.R.
        Biochem. Biophys. Res. Commun. 1985; 130: 407-411
        • Horowitz P.
        • Criscimagna N.L.
        J. Biol. Chem. 1986; 261: 15652-15658
        • Tandon S.
        • Horowitz P.M.
        J. Biol. Chem. 1986; 261: 15615-15618
        • Baillie R.D.
        • Horowitz P.M.
        Biochim. Biophys. Acta. 1976; 429: 383-390
        • Horowitz P.
        Anal. Biochem. 1978; 86: 751-753
        • Sorbo B.
        Acta Chem. Scand. 1953; 7: 1123-1130
        • Horowitz P.M.
        • Simon D.
        J. Biol. Chem. 1986; 261: 13887-13891
      1. Calbiochem Catalog.
        Behring Diagnostics, La Jolla, CA1985
        • Pecci L.
        • Pensa B.
        • Costa M.
        • Cignini P.L.
        • Cannella C.
        Biochim. Biophys. Acta. 1976; 445: 104-111
        • Costa M.
        • Pecci L.
        • Pensa B.
        • Cannella C.
        Biochem. Biophys. Res. Commun. 1977; 78: 596-603
        • Wang S-F.
        • Volini M.
        J. Biol. Chem. 1968; 243: 5465-5470
        • Horowitz P.M.
        • Bowman S.
        Electrophoresis. 1987; 7: 534-535
        • Reynolds J.A.
        Meth. In Enzymology. 1977; 61: 58-62
        • Robinson N.C.
        • Tanford C.
        Biochemistry. 1975; 14: 369-378
        • Grefrath S.P.
        • Reynolds J.A.
        Proc. Natl. Acad. Sci. U. S. A. 1974; 71: 3913-3916
        • DeGrip W.J.
        • Bovee-Geurts P.H.M.
        Chem. Phys. Lipids. 1979; 23: 321-335
        • Horowitz P.
        J. Colloid Interface Sci. 1977; 61: 197-198