This paper is only available as a PDF. To read, Please Download here.
The PS120 variant of Chinese hamster lung fibroblasts which lacks Na+/H+ exchange activity was used to investigate bicarbonate transport systems and their role in intracellular pH (pHi) regulation. When pHi was decreased by acid load, bicarbonate caused pHi increase and stimulated 36Cl- efflux from the cells, both in a Na+-dependent manner. These results together with previous findings that bicarbonate stimulates 22Na+ uptake in PS120 cells (L'Allemain, G., Paris, S., and Pouyssegur, J. (1985) J. Biol. Chem. 260, 4877-4883) demonstrate the presence of a Na+-linked Cl-/HCO3- exchange system. In cells with normal initial pHi, bicarbonate caused Na+-independent pHi increase in Cl(-)-free solutions and stimulated Na+-independent 36Cl- efflux, indicating that a Na+-independent Cl-/HCO3- exchanger is also present in the cell. Na+-linked and Na+-independent Cl-/HCO3- exchange is apparently mediated by two distinct systems, since a [(tetrahydrofluorene-7-yl)oxy]acetic acid derivative selectively inhibits the Na+-independent exchanger. An additional distinctive feature is a 10-fold lower affinity for chloride of the Na+-linked exchanger. The Na+-linked and Na+-independent Cl-/HCO3- exchange systems are likely to protect the cell from acid and alkaline load, respectively.
REFERENCES
- Nature. 1982; 299: 161-163
- J. Biol. Chem. 1984; 259: 7563-7569
- EMBO J. 1984; 3: 1865-1870
- J. Biol. Chem. 1984; 259: 10989-10994
- J. Gen. Physiol. 1984; 83: 341-369
- Trends Biochem. Sci. 1985; 10: 453-455
- Bioassays. 1985; 1: 16-20
- Annu. Rev. Physiol. 1986; 48: 363-376
- J. Membr. Biol. 1986; 90: 1-12
- Curr. Top. Membr. Transp. 1986; 27: 3-54
- J. Cell. Physiol. 1985; 122: 178-186
- J. Biol. Chem. 1985; 260: 4877-4883
- J. Gen. Physiol. 1984; 83: 801-818
- Am. J. Physiol. 1985; 249: G236-G245
- J. Clin. Invest. 1985; 75: 1256-1263
- J. Physiol. 1986; 379: 377-406
- Proc. Natl. Acad. Sci. U. S. A. 1986; 83: 522-526
- J. Cell. Biol. 1986; 102: 967-971
- J. Biol. Chem. 1987; 262: 4516-4520
- J. Physiol. 1977; 273: 317-338
- Am. J. Physiol. 1981; 240: C80-C89
- J. Gen. Physiol. 1983; 81: 373-399
- J. Biol. Chem. 1983; 258: 12644-12653
- J. Gen. Physiol. 1985; 85: 325-345
- Biochim. Biophys. Acta. 1978; 515: 239-302
- Physiol. Rev. 1981; 61: 296-434
- J. Membr. Biol. 1983; 72: 1-16
- Biochim. Biophys. Acta. 1986; 864: 1-31
- J. Biol. Chem. 1987; 262: 7486-7491
- Proc. Natl. Acad. Sci. U. S. A. 1984; 81: 4833-4837
- Methods Enzymol. 1987; 147: 415-427
- J. Cell Biol. 1982; 95: 189-196
- J. Med. Chem. 1986; 29: 825-841
- Med. Res. Rev. 1987; 7: 271-305
- Nauny-Schmiedeberg's Arch. Pharmacol. 1986; 334: 202-209
- J. Cell. Physiol. 1987; 132: 183-191
- J. Cell. Physiol. 1987; 132: 192-202
Article Info
Identification
Copyright
© 1988 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) | How you can reuse
Elsevier's open access license policy

Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0)
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy