Advertisement

Xylosylation and glucuronosylation reactions in rat liver Golgi apparatus and endoplasmic reticulum.

Open AccessPublished:October 05, 1986DOI:https://doi.org/10.1016/S0021-9258(18)69252-X
      This paper is only available as a PDF. To read, Please Download here.
      We have studied in rat liver the subcellular sites and topography of xylosylation and galactosylation reactions occurring in the biosynthesis of the D-glucuronic acid-galactose-galactose-D-xylose linkage region of proteoglycans and of glucuronosylation reactions involved in both glycosaminoglycan biosynthesis and bile acid and bilirubin conjugation. The specific translocation rate of UDP-xylose into sealed, "right-side-out" vesicles from the Golgi apparatus was 2-5-fold higher than into sealed right-side-out vesicles from the rough endoplasmic reticulum (RER). Using the above vesicle preparations, we only detected endogenous acceptors for xylosylation in the Golgi apparatus-rich fraction. The specific activity of xylosyltransferase (using silk fibroin as exogenous acceptor) was 50-100-fold higher in Golgi apparatus membranes than in those from the RER. Previous studies had shown that UDP-galactose is translocated solely into vesicles from the Golgi apparatus. In these studies, we found the specific activity of galactosyltransferase I to be 40-140-fold higher in membranes from the Golgi apparatus than in those from the RER. The specific translocation rate of UDP-D-glucuronic acid into vesicles from the Golgi apparatus was 10-fold higher than into those from the RER, whereas the specific activity of glucuronosyltransferase (using chondroitin nonasaccharide as exogenous acceptor) was 12-30-fold higher in Golgi apparatus membranes than in those from the RER. Together, the above results strongly suggest that, in rat liver, the biosynthesis of the above-described proteoglycan linkage region occurs in the Golgi apparatus. The specific activity of glucuronosyltransferase, using bile acids and bilirubin as exogenous acceptor, was 10-25-fold higher in RER membranes than those from the Golgi apparatus. This suggests that transport of UDP-D-glucuronic acid into the RER lumen is not required for such reactions.

      REFERENCES

        • Geetha-Habib M.
        • Campbell S.C.
        • Schwartz N.B.
        J. Biol. Chem. 1984; 259: 7300-7310
        • Hoffmann H.P.
        • Schwartz N.B.
        • Roden L.
        • Prockop D.J.
        Connect. Tissue Res. 1984; 12: 151-163
        • Kimura J.H.
        • Lohmander S.S.
        • Hascall V.C.
        J. Cell. Biochem. 1984; 26: 261-278
        • Horwitz A.L.
        • Dorfman A.
        J. Cell. Biol. 1968; 38: 358-368
        • Freilich L.S.
        • Lewis R.G.
        • Repucci A.C.
        • Silbert J.E.
        Biochem. Biophys. Res. Commun. 1975; 63: 663-668
        • Silbert J.E.
        • Freilich L.S.
        Biochem. J. 1980; 190: 307-313
        • Hauser S.C.
        • Ziurys J.C.
        • Gollan J.L.
        J. Biol. Chem. 1984; 259: 4527-4533
        • Matern H.
        • Matern S.
        • Gerok W.
        J. Biol. Chem. 1982; 257: 7422-7429
        • Hochman Y.
        • Kelley M.
        • Zakim D.
        J. Biol. Chem. 1983; 258: 6509-6516
        • Nilsson O.
        • DePierre J.W.
        • Dallner G.
        Biochim. Biophys. Acta. 1978; 511: 93-104
        • Haeger B.
        • DeBrito R.
        • Hallinan T.
        Biochem. J. 1980; 192: 971-974
        • Coates S.W.
        • Gurney Jr., T.
        • Sommers L.W.
        • Yeh M.
        • Hirschberg C.B.
        J. Biol. Chem. 1980; 255: 9225-9229
        • Sommers L.W.
        • Hirschberg C.B.
        J. Biol. Chem. 1982; 257: 10811-10817
        • Schwarz J.K.
        • Capasso J.M.
        • Hirschberg C.B.
        J. Biol. Chem. 1984; 259: 3554-3559
        • Deutscher S.L.
        • Nuwayhid N.
        • Stanley P.
        • Briles E.I.B.
        • Hirschberg C.B.
        Cell. 1984; 39: 295-299
        • Perez M.
        • Hirschberg C.B.
        J. Biol. Chem. 1985; 260: 4671-4678
        • Deutscher S.L.
        • Hirschberg C.B.
        J. Biol. Chem. 1986; 261: 96-100
        • Capasso J.M.
        • Hirschberg C.B.
        Proc. Natl. Acad. Sci. U. S. A. 1984; 81: 7051-7055
        • Fleischer S.
        • Kervina M.
        Methods Enzymol. 1974; 31: 6-41
        • Leelavathi D.E.
        • Estes L.W.
        • Feingold D.S.
        • Lombardi B.
        Biochim. Biophys. Acta. 1970; 211: 124-138
        • Matern H.
        • Matern S.
        • Gerok W.
        Anal. Biochem. 1983; 133: 417-424
        • Esko J.D.
        • Stewart T.E.
        • Taylor W.H.
        Proc. Natl. Acad. Sci. U. S. A. 1985; 82: 3194-3201
        • Campbell P.
        • Jacobsson I.
        • Benzing-Purdie L.
        • Roden L.
        • Fessler J.H.
        Anal. Biochem. 1984; 137: 505-516
        • Gundlach M.W.
        • Conrad H.E.
        Biochem. J. 1985; 226: 705-714
        • Hanover J.A.
        • Lennarz W.J.
        • Yong J.D.
        J. Biol. Chem. 1980; 255: 6713-6716
        • Hanover J.A.
        • Elting J.
        • Mintz G.R.
        • Lennarz W.J.
        J. Biol. Chem. 1982; 257: 10172-10177
        • Cummings R.D.
        • Kornfeld S.
        • Schneider W.J.
        • Hobgood K.K.
        • Tolleshaug H.
        • Brown M.S.
        • Goldstein J.L.
        J. Biol. Chem. 1983; 258: 15261-15273
        • Elhammer A.
        • Kornfeld S.
        J. Cell. Biol. 1984; 98: 327-331
        • Abeijon C.
        • Hirschberg C.B.
        Fed. Proc. 1986; 45 (abstr.): 1977
        • Perez M.
        • Hirschberg C.B.
        J. Biol. Chem. 1986; 261: 6822-6830
        • Hauser S.C.
        • Ziurys J.C.
        • Gollan J.L.
        Hepatology (Baltimore). 1985; 5 (abstr.): 1036
      1. Lohmander, L. S., Hascall, V. C., Yanagishiga, M., Kuettner, K. E., and Kimura, J. H. (1986) Arch. Biochem. Biophys., in press