Advertisement

Purification, Crystallization, and Preliminary X-ray Diffraction Studies of the Flavoenzyme Mercuric Ion Reductase from Bacillus sp. Strain RC607

Open AccessPublished:August 25, 1989DOI:https://doi.org/10.1016/S0021-9258(18)71690-6
      This paper is only available as a PDF. To read, Please Download here.
      The flavoenzyme mercuric ion reductase from Bacillus sp. strain RC607 was purified by dye-ligand affinity chromatography. The protein was crystallized from solutions of high ionic strength, and one of the two crystal forms obtained has proven suitable for x-ray diffraction studies. Preliminary analysis showed that these crystals belong to the tetragonal space group 1422. The unit cell dimensions are a = b = 180.7 Å; c = 127.9 Å. The diffraction pattern extends to better than 3 Å resolution. Crystal density measurements are consistent with one enzyme dimer of 2 × 69,000 Da comprising the asymmetric unit. Trypsin treatment of the native enzyme resulted in the removal of 157 amino acids at the N terminus. After purification, the remaining fragment (amino acids 158–631), which is still fully active in vitro, could be crystallized under the same conditions as native enzyme. Twinning problems, however, did not allow complete analysis of these crystals.

      REFERENCES

        • Williams Jr., C.H.
        Enzymes. 1976; 13: 90-165
        • Shames S.L.
        • Kimmel B.E.
        • Peoples O.P.
        • Agabian N.
        • Walsh C.T.
        Biochemistry. 1988; 27: 5014-5019
        • Karplus P.A.
        • Schulz G.E.
        J. Mol. Biol. 1987; 195: 701-729
        • Schierbeek A.J.
        • Swarte M.B.A.
        • Dijkstra B.W.
        • Vriend G.
        • Read R.J.
        • Hol W.G.J.
        • Drenth J.
        J. Mol. Biol. 1989; 206: 365-379
        • Fox B.A.
        • Walsh C.T.
        Biochemistry. 1983; 22: 4082-4088
        • Brown N.L.
        • Ford S.J.
        • Pridmore R.D.
        • Fritzinger D.C.
        Biochemistry. 1983; 22: 4089-4095
        • Massey V.
        • Williams Jr., C.H.
        J. Biol. Chem. 1965; 240: 4470-4480
        • Casola M.
        • Massey V.
        J. Biol. Chem. 1966; 241: 4985-4993
        • Pai E.F.
        • Schulz G.E.
        J. Biol. Chem. 1983; 258: 1752-1757
        • Pai E.F.
        • Horn E.
        • Schulz G.E.
        Bray R.C. Engel P.C. Mayhew S.G. Flavins and Flavoproteins. Walter de Gruyter, Berlin, FRG1984: 139-142
        • Miller S.M.
        • Ballou D.P.
        • Massey V.
        • Williams Jr., C.H.
        • Walsh C.T.
        J. Biol. Chem. 1986; 261: 8081-8084
        • Distefano M.D.
        • Au K.G.
        • Walsh C.T.
        Biochemistry. 1989; 28: 1168-1183
        • Moore M.J.
        • Walsh C.T.
        Biochemistry. 1989; 28: 1183-1194
        • Miller S.M.
        • Moore M.J.
        • Massey V.
        • Williams Jr., C.H.
        • Distefano M.D.
        • Ballou D.P.
        • Walsh C.T.
        Biochemistry. 1989; 28: 1194-1205
        • Silver S.
        • Misra T.K.
        Annu. Rev. Microbiol. 1988; 42: 717-743
        • Wang Y.
        • Moore M.
        • Levinson H.S.
        • Silver S.
        • Walsh C.T.
        • Mahler I.
        J. Bacteriol. 1989; 171: 83-92
        • Matsudaira P.
        J. Biol. Chem. 1987; 262: 10035-10038
        • Fox B.
        • Walsh C.T.
        J. Biol. Chem. 1982; 257: 2498-2503
        • McPherson A.
        Methods Enzymol. 1985; 114: 112-128
        • Laemmli U.K.
        Nature. 1970; 227: 680-685
        • Kabsch W.
        J. Appl. Crystallogr. 1988; 21: 916-924
        • Wang Y.
        • Mahler I.
        • Levinson H.S.
        • Halvorson H.O.
        J. Bacteriol. 1987; 169: 4848-4851
        • Rinderle S.J.
        • Booth J.E.
        • Williams J.W.
        Biochemistry. 1983; 22: 869-876
        • Matthews B.W.
        J. Mol. Biol. 1968; 33: 491-497