Advertisement

Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis

Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy.
      This paper is only available as a PDF. To read, Please Download here.
      The nature of non-transferrin-bound iron in the plasma or serum of iron-overloaded hemochromatosis patients was studied by high performance liquid chromatography (HPLC) and high resolution nuclear magnetic resonance (NMR). 500-MHz proton Hahn spin-echo NMR spectra of plasma or serum, combined with the use of the iron chelator desferrioxamine, suggests complexation of iron ions with citrate and a possible involvement of acetate. Addition of FeCl3 to hemochromatosis samples broadened the NMR signals from citrate. HPLC analysis rigorously confirmed the presence of an iron-citrate complex in ultrafiltrates of plasma or serum studies with added FeCl3 or desferrioxamine supported this conclusion. It is proposed that non-transferrin-bound iron in the plasma of iron-overloaded patients exists largely as complexes with citrate and possibly also as ternary iron-citrate-acetate complexes. The presence of such complexes would account for the ability of non-transferrin-bound iron to be measurable by the bleomycin assay and for its rapid clearance from the circulation by the liver.

      REFERENCES

        • McLaren G.D.
        • Muir W.A.
        • Kellermeyer R.W.
        CRC Crit Rev. Clin. Lab. Sci. 1983; 19: 205-266
        • Batey R.G.
        • Fong P.L.C.
        • Shamir S.
        • Sherlock S.
        Dig. Dis. Sci. 1980; 25: 340-346
        • Hershko C.
        • Peto T.E.A.
        Br. J. Haematol. 1987; 66: 149-151
        • Gutteridge J.M.C.
        • Rowley D.A.
        • Griffiths E.
        • Halliwell B.
        Clin. Sci. (Oxf.). 1985; 68: 463-467
        • Gutteridge J.M.C.
        • Halliwell B.
        Life Chem. Rep. 1987; 4: 113-142
        • Aruoma O.I.
        • Bomford A.
        • Poison R.J.
        • Halliwell B.
        Blood. 1988; 72: 1416-1419
        • Pootrakul P.
        • Josephson B.
        • Huebers H.A.
        • Finch C.A.
        Blood. 1988; 71: 1120-1123
        • Gutteridge J.M.C.
        • Winyard P.G.
        • Blake D.R.
        • Lunec J.
        • Brailsford S.
        • Halliwell B.
        Biochem. J. 1985; 230: 517-523
        • Nicholson J.K.
        • O'Flynn M.P.
        • Sadler P.J.
        • Macleod A.F.
        • Juul S.M.
        • Sonksen P.H.
        Biochem. J. 1984; 217: 365-375
        • Nicholson J.K.
        • Buckingham M.J.
        • Sadler P.J.
        Biochem. J. 1983; 211: 605-615
        • Bell J.D.
        • Brown J.C.C.
        • Nicholson J.K.
        • Sadler P.J.
        FEBS Lett. 1987; 215: 311-315
        • Bell J.D.
        • Sadler P.J.
        • Macleod A.F.
        • Turner P.
        • LaVille A.
        FEBS Lett. 1987; 219: 239-243
        • Rabenstien D.L.
        • Nakashima T.T.
        Anal. Chem. 1979; 57: 1465A-1474A
        • Brown F.F.
        • Campbell I.D.
        Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980; 289: 395-406
        • Spiro T.G.
        • Pape L.
        • Saltman P.
        J. Am. Chem. Soc. 1967; 89: 5555-5558
        • Halliwell B.
        • Gutteridge J.M.C.
        Mol. Aspects Med. 1985; 8: 89-193
        • Gutteridge J.M.C.
        • Hou Y.
        Free Radical Res. Commun. 1986; 2: 143-151
        • Brissot P.
        • Wright T.L.
        • Ma W.L.
        • Weisiger R.A.
        J. Clin. Invest. 1985; 76: 1463-1470
        • Martin R.B.
        J. Inorg. Biochem. 1986; 28: 181-187
        • Monzyk B.
        • Crumbliss L.
        J. Am. Chem. Soc. 1982; 104: 4921-4929