Advertisement

Guinea pigs possess a highly mutated gene for L-gulono-gamma-lactone oxidase, the key enzyme for L-ascorbic acid biosynthesis missing in this species.

Open AccessPublished:October 25, 1992DOI:https://doi.org/10.1016/S0021-9258(19)36707-9
      This paper is only available as a PDF. To read, Please Download here.
      Guinea pigs cannot synthesize L-ascorbic acid because of their deficiency in L-gulono-gamma-lactone oxidase, a key enzyme for the biosynthesis of this vitamin in higher animals. In this study we isolated the L-gulono-gamma-lactone oxidase gene of the rat and the homologue of this gene of the guinea pig by screening rat and guinea pig genomic DNA libraries in lambda phage vectors, respectively, using a rat L-gulono-gamma-lactone oxidase cDNA as a probe. Sequencing analysis showed that the amino acid sequence of the rat enzyme is encoded by 12 exons and that all the intron/exon boundaries follow the GT/AG rule. On the other hand, regions corresponding to exons I and V were not identified in the guinea pig L-gulono-gamma-lactone oxidase gene homologue. Other defects found in this gene homologue are a deletion of the nucleotide sequence corresponding to a 3' 84-base pair part of rat exon VI, a 2-base pair deletion in the remaining exon VI-related region, and nonconformance to the GT/AG rule at one of the putative intron/exon boundaries. Furthermore, a large number of mutations were found in the amino acid-coding regions of the guinea pig sequence; more than half of them lead to nonconservative amino acid changes, and there are three stop codons as well. Thus it is clear that the guinea pig homologue of the L-gulono-gamma-lactone oxidase gene exists as a pseudogene that randomly accumulated a large number of mutations without functional constraint since the gene ceased to be active during evolution. On the basis of the neutral theory of evolution, the date of the loss of L-gulono-gamma-lactone oxidase in the ancestors of the guinea pig was roughly calculated to be less than 20 million years ago.

      REFERENCES

        • Burns J.J.
        Nature. 1957; 180: 553
        • Nishikimi M.
        • Koshizaka T.
        • Ozawa T.
        • Yagi K.
        Arch. Biochem. Biophys. 1988; 267: 842-846
        • Nishikimi M.
        • Udenfriend S.
        Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 2066-2068
        • Derman E.
        • Krauter K.
        • Walling L.
        • Weinberger C.
        • Ray M.
        • Darnell Jr., J.E.
        Cell. 1981; 23: 731-739
        • Kuribayashi K.
        • Hikata M.
        • Hiraoka O.
        • Miyamoto C.
        • Fruichi Y.
        Nucleic Acids Symp. Ser. 1988; 19: 61-64
        • Koshizaka T.
        • Nishikimi M.
        • Ozawa T.
        • Yagi K.
        J. Biol. Chem. 1988; 263: 1619-1621
        • Feinberg A.P.
        • Vogelstein B.
        Anal. Biochem. 1983; 132: 6-13
        • Maniatis T.
        • Fritsch E.F.
        • Sambrook J.
        Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor. NY1982
        • Hattori M.
        • Sakaki Y.
        Anal. Biochem. 1986; 152: 232-238
        • Sanger F.
        • Nicklen S.
        • Coulson A.R.
        Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 5463-5467
        • Henikoff S.
        Gene (Amst.). 1984; 28: 351-359
        • McKnight S.L.
        • Kingsbury R.
        Science. 1982; 217: 316-324
        • Miyata T.
        • Yasunaga T.
        J. Mol. Evol. 1980; 16 (1980): 23-36
        • Nei M.
        • Gojobori T.
        Mol. Biol. Evol. 1986; 3: 418-426
        • Jukes T.H.
        • Cantor C.R.
        Munro H.N. Mammalian Protein Metabolism. 2. Academic Press, New York1969: 21-132
        • Bucher P.
        J. Mol. Biol. 1990; 212: 563-578
        • Ramji D.P.
        • Tadros M.H.
        • Hardon E.M.
        • Cortese R.
        NucleicAcids Res. 1991; 19: 1139-1146
        • Swimmer C.
        • Shenk T.
        Nucleic Acids Res. 1985; 13: 8053-8063
        • Benoist C.
        • O'Hare K.
        • Breathnach R.
        • Chambon P.
        NucleicAcids Res. 1980; 8: 127-142
        • McLauchlan J.
        • Gaffnev D.
        • Whitton J.L.
        • Clements J.B.
        Nucleic Acids Res. 1985; 13: 1347-1368
        • Mounts S.M.
        Nucleic Acids Res. 1982; 10: 459-472
        • Dayhoff M.O.
        • Schwarz R.M.
        • Orcutt B.C.
        Dayhoff M.O. Atlas of Protein Sequence and Structure. 5. National Biomedical Research Foundation, Silver Spring, MD1978: 345-352 (Suppl. 3)
        • Hendriks W.
        • Leunissen J.
        • Nevo E.
        • Bloemendal H.
        • de Jong W.W.
        Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 5320-5324
        • Hayashida H.
        • Miyata T.
        Proc. Natl. Acad. Sci. U. S. A. 1983; 80: 2671-2675
        • Kimura M.
        The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, United Kingdom1983
        • Grauer D.
        • Hide W.A.
        • Li W.-H.
        Nature. 1991; 351: 649-652