Advertisement

Structure and function of a membrane anchor-less form of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus.

Open AccessPublished:October 05, 1993DOI:https://doi.org/10.1016/S0021-9258(19)36941-8
      This paper is only available as a PDF. To read, Please Download here.
      The hemagglutinin-neuraminidase (HN) glycoprotein of paramyxoviruses is anchored in the virion membrane near its amino terminus, protruding from the virion surface to mediate attachment to cellular receptors. Solubilization of HN spikes can be achieved by treatment of virions with detergent and high salt concentrations. When the solubilized HN protein from the Australia-Victoria (AV) isolate of the virus is incubated at 37 degrees C, a chymotrypsin-sensitive site between residues 112 and 113 is exposed. A chymotrypsin-cleaved soluble form of the protein, named CT-HN, has been prepared using this approach. It is membrane anchor-less, due to removal of a 14-kDa fragment from the NH2 terminus of HN. It retains all potential glycosylation sites and cysteines present in the ectodomain of the native protein. It migrates in nonreducing gels and sediments in sucrose gradients at the rate expected for homodimeric HN. The latter is also consistent with our demonstration by site-directed mutagenesis that cysteine residues at positions 6 and 123, respectively, mediate disulfide-linked homotetramer and homodimer formation. CT-HN retains almost total antigenicity, suggesting that it is conformationally very similar to the intact molecule, as well as receptor recognition function and, at low pH, neuraminidase activity. It should prove to be a useful tool for further studies of the structure and function of this important viral glycoprotein.

      REFERENCES

        • Kingsbury D.W.
        • Bratt M.A.
        • Choppin P.W.
        • Hanson R.P.
        • Hosaka Y.
        • ter Meulen V.
        • Norrby E.
        • Plowright W.
        • Rott R.
        • Wunner W.H.
        Intervirology. 1978; 10: 137-152
        • Scheid A.
        • Choppin P.W.
        J. Virol. 1973; 11: 263-271
        • Scheid A.
        • Choppin P.W.
        Virology. 1974; 57: 475-490
        • Choppin P.W.
        • Scheid A.
        Rev. Infect. Dis. 1980; 2: 40-61
        • Schuy W.
        • Garten W.
        • Under D.
        • Klenk H.-D.
        Virus Res. 1984; 1: 415-426
        • Markwell M.A.K.
        • Fox C.F.
        J. Virol. 1980; 33: 152-166
        • Moore N.F.
        • Burke D.C.
        J. Gen. Virol. 1974; 25: 275-289
        • Smith G.W.
        • Hightower L.E.
        J. Virol. 1981; 37: 256-267
        • Sheehan J.P.
        • Iorio R.M.
        • Syddall R.J.
        • Glickman R.L.
        • Bratt M.A.
        Virology. 1987; 161: 603-606
        • Iorio R.M.
        • Bratt M.A.
        J. Virol. 1983; 48: 440-450
        • Iorio R.M.
        • Borgman J.B.
        • Glickman R.L.
        • Bratt M.A.
        J. Gen. Virol. 1986; 67: 1393-1403
        • Iorio R.M.
        • Glickman R.L.
        • Riel A.M.
        • Sheehan J.P.
        • Bratt M.A.
        Virus Res. 1989; 13: 245-262
        • Iorio R.M.
        • Bratt M.A.
        J. Immunol. 1984; 133: 2215-2219
        • Iorio R.M.
        • Glickman R.L.
        J. Virol. 1992; 66: 6626-6633
        • Iorio R.M.
        • Glickman R.L.
        • Sheehan J.P.
        J. Gen. Virol. 1992; 73: 1167-1176
        • Iorio R.M.
        • Syddall R.J.
        • Glickman R.L.
        • Riel A.M.
        • Sheehan J.P.
        • Bratt M.A.
        Virology. 1989; 173: 196-204
        • Iorio R.M.
        • Syddall R.J.
        • Sheehan J.P.
        • Bratt M.A.
        • Glickman R.L.
        • Riel A.M.
        J. Virol. 1991; 65: 4999-5006
        • Gotoh B.
        • Sakaguchi T.
        • Nishikawa K.
        • Inocencio N.M.
        • Hamaguchi M.
        • Toyoda T.
        • Nagai Y.
        Virology. 1988; 163: 174-182
        • Yusoff K.
        • Neabit M.
        • McCartney H.
        • Emmerson P.T.
        • Samson A.C.R.
        Virus Res. 1988; 11: 319-333
        • Thompson S.D.
        • Laver W.G.
        • Murti K.G.
        • Portner A.
        J. Virol. 1988; 62: 4653-4660
        • Scheid A.
        • Graves M.C.
        • Silver S.M.
        • Choppin P.W.
        Mahy B.W.J. Barry R.D. Negative Strand Viruses and the Host Cell. Academic Press, New York1978: 181-193
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        J. Biol Chem. 1951; 193: 265-275
        • Laemmli U.K.
        Nature. 1970; 227: 680-685
        • Matsudaira P.
        J. Biol. Chem. 1987; 262: 10035-10038
        • Aminoff D.
        Biochem. J. 1961; 81: 3384-3392
        • Sheehan J.P.
        • Iorio R.M.
        Virology. 1992; 189: 778-781
        • McGinnes L.W.
        • Wilde A.
        • Morrison T.G.
        Virus Res. 1987; 7: 187-202
        • Cullen B.R.
        Methods Enzymol. 1987; 152: 684-704
        • Sakaguchi T.
        • Toyoda T.
        • Gotoh B.
        • Inocencio N.M.
        • Kuma K.
        • Miyata T.
        • Nagai Y.
        Virology. 1989; 169: 260-272
        • Takimoto T.
        • Laver W.G.
        • Murti K.G.
        • Portner A.
        J. Virol. 1992; 66: 7597-7600
        • Ng D.T.W.
        • Randall R.E.
        • Lamb R.A.
        J. Cell Biol. 1989; 109: 3273-3289