Advertisement

Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles.

      This paper is only available as a PDF. To read, Please Download here.
      Submitochondrial particles subjected to an artificially imposed electrochemical proton gradient consisting of a pH gradient (acid to base transition) and membrane potential (low to high K-+ transition in the presence of valinomycin) catalyzed the net synthesis of 2.5 nmol of [-32P]ATP per mg of protein from ADP and 32-Pi. Optimal reaction conditions included incubation of submitochondrial particles in malonate at pH 5.0 with valinomycin in the absence of added K-+, followed by a rapid transition to pH 7.5 and 100 mM K-+. ATP synthesis continued for about 6 s and was sensitive to uncouplers or oligomycin but insensitive to inhibitors of electron transport. Lower amounts of ATP were formed by either the pH gradient (25%) of K-+ gradient (15%) alone. These results demonstrate that an electrochemical gradient of protons can drive the synthesis of ATP by reversal of the proton-translocating ATPase independent of electron transport.

      REFERENCES

        • Thayer W.S.
        • Hinkle P.C.
        Fed. Proc. 1973; 32: 2568
        • Thayer W.S.
        • Hinkle P.C.
        J. Biol. Chem. 1973; 248: 5395-5402
        • Jagendorf A.T.
        • Uribe E.
        Proc. Natl. Acad. Sei. U. S. A. 1966; 55: 170-177
        • Jagendorf A.T.
        Fed. Proc. 1967; 26: 1361-1369
        • Jagendorf A.T.
        Methods Enzymol. 1972; 24: 103-113
        • Reid R.A.
        • Moyle J.
        • Mitchell P.
        Nature. 1966; 212: 257-258
        • Cockrell R.S.
        • Harris E.J.
        • Pressman B.C.
        Nature. 1967; 215: 1487-1488
        • Rossi E.
        • Azzone G.
        Eur. J. Biochem. 1970; 12: 319-327
        • Green D.E.
        • Lester R.L.
        • Ziegler D.M.
        Biochim. Biophys. Acta. 1957; 23: 516-524
        • Horstman L.L.
        • Racker E.
        J. Biol. Chem. 1970; 245: 1336-1344
        • Hansen M.
        • Smith A.L.
        Biochim. Biophys. Acta. 1964; 81: 214-222
        • Lindberg O.
        • Ernster L.
        Methods Biochem. Anal. 1956; 3: 1-22
        • Jacobs E.E.
        • Jacob M.
        • Sanadi D.R.
        • Bradley L.B.
        J. Biol. Chem. 1956; 223: 147-156
        • Mitchell P.
        • Moyle J.
        Nature. 1965; 208: 1205-1206
        • Hinkle P.C.
        • Horstman L.L.
        J. Biol. Chem. 1971; 246: 6024-6028
        • Moore C.
        • Pressman B.C.
        Biochem. Biophys. Res. Commun. 1964; 15: 562-567
        • Henderson P.J.F.
        • McGivan J.D.
        • Chappell J.B.
        Biochem. J. 1969; 111: 521-535
        • Chance B.
        • Montal M.
        Curr. Top. Memb. Transp. 1971; 2: 99-156
        • Pressman B.C.
        • Harris E.J.
        • Jagger W.S.
        • Johnson J.H.
        Proc. Natl. Acad. Sci. U. S. A. 1967; 58: 1949-1956
        • Chance B.
        • Hollunger G.
        J. Biol. Chem. 1961; 236: 1562-1568
        • Löw H.
        • Vallin I.
        • Alm B.
        Chance B. Energy-linked Functions of Mitochondria. Academie Press, New York1963: 5-25
        • Robinson B.H.
        • Chappell J.B.
        Biochem. Biophys. Res. Commun. 1967; 28: 249-255
        • Tyler D.D.
        Biochem. J. 1968; 107: 121-123
      1. Weast R.C. Handbook of Chemistry and Physics. Ed. 50. Chemical Rubber Co., Cleveland, Ohio1969: D-118
        • Chance B.
        • Scarpa A.
        Methods Enzymol. 1972; 24B: 336-342
        • Uribe E.
        • Jagendorf A.T.
        Plant Physiol. 1967; 42: 697-705
        • Uribe E.
        • Jagendorf A.T.
        Plant Physiol. 1967; 42: 706-711
        • Uribe E.
        • Jagendorf A.T.
        Arch. Biochem. Biophys. 1968; 128: 351-359
        • Mitchell P.
        • Moyle J.
        Nature. 1965; 208: 147-151
        • Mitchell P.
        • Moyle J.
        Eur. J. Biochem. 1968; 4: 530-539
        • Skulachev V.P.
        Curr. Top. Bioenerget. 1971; 4: 127-180
        • Schuldiner S.
        • Rottenberg H.
        • Avron M.
        FEBS Lett. 1972; 28: 173-176
        • Hind G.
        • Nakatani H.
        • Izawa S.
        Proc. Natl. Acad. Sci. U. S. A. 1974; 71: 1484-1488
        • Chang T.
        • Penefsky H.S.
        J. Biol. Chem. 1974; 249: 1090-1098
        • Racker E.
        • Horstman L.L.
        J. Biol. Chem. 1967; 242: 2547-2551
        • Lambeth D.O.
        • Lardy H.A.
        • Senior A.E.
        • Brooks J.C.
        FEBS Lett. 1971; 17: 330-332
        • Papa S.
        • Storey B.T.
        • Lorusso M.
        • Lee C.P.
        • Chance B.
        Biochem. Biophys. Res. Commun. 1973; 52: 1395-1402
        • McCarty R.
        Biochem. Biophys. Res. Commun. 1968; 32: 37-43
        • Boyer P.D.
        Curr. Top. Bioenerget. 1967; 2: 99-149
        • Groot G.S.P.
        • Kovac L.
        • Schatz G.
        Proc. Natl. Acad. Sci. U. S. A. 1971; 68: 308-311
        • Kagawa Y.
        Biochim. Biophys. Acta. 1972; 265: 297-338
        • Mitchell P.
        Nature. 1961; 191: 144-148
        • Mitchell P.
        Biol. Rev. 1966; 41: 445-502
        • Slater E.C.
        Nature. 1953; 172: 975-978
        • Boyer P.D.
        King T.E. Mason H.S. Morrison M. Oxidases and Related Redox Systems. 2. J. Wiley & Sons, New York1965: 994-1008
        • Slater E.C.
        Eur. J. Biochem. 1967; 1: 317-326
        • Greville G.D.
        Curr. Top. Bioenerget. 1969; 3: 1-78