Advertisement

The Role of Superoxide Anion in the Autoxidation of Epinephrine and a Simple Assay for Superoxide Dismutase

Open AccessPublished:May 25, 1972DOI:https://doi.org/10.1016/S0021-9258(19)45228-9
      This paper is only available as a PDF. To read, Please Download here.
      The rate of autoxidation of epinephrine and the sensitivity of this autoxidation to inhibition by superoxide dismutase were both augmented, as the pH was raised from 7.8 → 10.2. O2-, generated by the xanthine oxidase reaction, caused the oxidation of epinephrine to adrenochrome and the yield of adrenochrome produced per O2- introduced, increased with increasing pH in the range 7.8 → 10.2 and also increased with increasing concentration of epinephrine. These results, in conjunction with complexities in the kinetics of adrenochrome accumulation, lead to the proposal that the autoxidation of epinephrine proceeds by at least two distinct pathways, only one of which is a free radical chain reaction involving O2- and hence inhibitable by superoxide dismutase. This chain reaction accounted for a progressively greater fraction of the total oxidation as the pH was raised. The ability of superoxide dismutase to inhibit the autoxidation of epinephrine at pH 10.2 has been used as the basis of a convenient and sensitive assay for this enzyme.

      REFERENCES

        • Heacock R.A.
        Chem. Rev. 1959; 59: 181
        • Harrison W.H.
        Arch. Biochem. Biophys. 1963; 101: 116-130
        • Hawley M.D.
        • Tatawawadi S.V.
        • Piekarski S.
        • Adams R.N.
        J. Amer. Chem. Soc. 1967; 89: 447
        • Walaas E.
        • Walaas O.
        Arch. Biochem. Biophys. 1961; 95: 151-162
        • Walaas E.
        • Walaas O.
        • Haavaldsen S.
        Arch. Biochem. Biophys. 1963; 100: 97-109
        • Borg D.C.
        Proc. Nat. Acad. Sci. U. S. A. 1965; 53: 633
        • Cilento G.
        • Zinner K.
        Biochim. Biophys. Acta. 1967; 143: 88-92
        • Mazur A.
        • Green S.
        • Shorr E.
        J. Biol. Chem. 1956; 220: 227
        • Valerino D.M.
        • McCormack J.J.
        Fed. Proc. 1969; 28: 545
        • Valerino D.M.
        • McCormack J.J.
        Biochem. Pharmacol. 1971; 20: 47
        • McCord J.M.
        • Fridovich I.
        J. Biol. Chem. 1969; 244: 6049-6055
        • McCord J.M.
        • Fridovich I.
        J. Biol. Chem. 1968; 243: 5753-5760
        • Massey V.
        • Strickland S.
        • Mayhew S.G.
        • Howell L.G.
        • Engel P.C.
        • Matthews R.G.
        • Schuman M.
        • Sullivan P.A.
        Biochem. Biophys. Res. Commun. 1969; 36: 891
        • Ballou D.
        • Palmer G.
        • Massey V.
        Biochem. Biophys. Res. Commun. 1969; 36: 898
        • Lazarow A.
        • Copperstein S.J.
        Science. 1954; 120: 674
        • Green S.
        • Mazur A.
        • Shorr E.
        J. Biol. Chem. 1956; 220: 237
        • Trautner E.M.
        • Bradley T.R.
        Aust. J. Sci. Res. B. 1951; 4: 303
        • McCord J.M.
        • Fridovich I.
        J. Biol. Chem. 1969; 244: 6056-6063
        • Misha H.P.
        • Fridovich I.
        J. Biol. Chem. 1971; 246: 6886
        • Forman H.
        • Fridovich I.
        Science. 1972; 175: 339
        • Beauchamp C.
        • Fridovich I.
        Anal. Biochem. 1971; 44: 276