Advertisement

Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean*

  • M Maeshima
    Correspondence
    To whom correspondence should be addressed.
    Affiliations
    Institute of Low Temperature Science, Hokkaido University, Sapporo 060, Japan
    Search for articles by this author
  • S Yoshida
    Affiliations
    Institute of Low Temperature Science, Hokkaido University, Sapporo 060, Japan
    Search for articles by this author
  • Author Footnotes
    * This work was supported in part by grants-in-aid from the Ministry of Education, Science, and Culture of Japan (to M. M.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Open AccessPublished:November 25, 1989DOI:https://doi.org/10.1016/S0021-9258(19)47219-0
      This paper is only available as a PDF. To read, Please Download here.
      Inorganic pyrophosphatase was purified from the vacuolar membrane of mung bean hypocotyl tissue by solubilization with lysophosphatidylcholine and QAE-Toyopearl chromatography. The molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 73,000 daltons. Among the amino-terminal first 30 amino acids are 25 nonpolar hydrophobic residues. For maximum activity, the purified pyrophosphatase required 1 mM Mg2+ and 50 mM K+. The enzyme reaction was stimulated by exogenous phospholipid in the presence of detergent. Excess pyrophosphate as well as excess magnesium inhibited the pyrophosphatase. The enzyme reaction was strongly inhibited by ATP, GTP, and CTP at 2 mM, and the inhibition was reversed by increasing the Mg2+ concentration. An antibody preparation raised in a rabbit against the purified enzyme inhibited both the reactions of pyrophosphate hydrolysis of the purified preparation and the pyrophosphate-dependent H+ translocation in the tonoplast vesicles. N,N'-Dicyclohexylcarbodiimide became bound to the purified pyrophosphatase and inhibited the reaction of pyrophosphate hydrolysis. It is concluded that the 73-kDa protein in vacuolar membrane functions as an H+-translocating inorganic pyrophosphatase.

      REFERENCES

        • Wagner G.J.
        Creasy L. Hrazdina G. Recent Advances in Phytochemistry. Vol. 16. Plenum Publishing Corp., New York1982: 1-45
        • Nishimura M.
        • Beevers H.
        Nature. 1979; 277: 412-413
        • Anraku Y.
        Ozawa T. Papa S. Bioenergetics: Structure and Function of Energy Transducing Systems. Springer-Verlag, Berlin1987: 249-262
        • Poole R.J.
        • Sarafian V.
        • Blumwald E.
        Leaver C. Sze H. Plant Membranes: Structure, Function, Biogenesis. Alan R. Liss Inc., New York1987: 209-222
        • Sze H.
        Annu. Rev. Plant Physiol. 1985; 36: 175-208
        • Chanson A.
        • Fichmann J.
        • Spear D.
        • Taiz L.
        Plant Physiol. 1985; 79: 159-164
        • Rea P.P.
        • Poole R.J.
        Plant Physiol. 1986; 81: 126-129
        • Mandala S.
        • Taiz L.
        Plant Physiol. 1985; 78: 327-333
        • Manolson M.F.
        • Rea P.A.
        • Poole R.J.
        J. Biol. Chem. 1985; 260: 12273-12279
        • Bowman E.J.
        • Mandala S.
        • Taiz L.
        • Bowman B.J.
        Proc. Natl. Acad. Sci. U. S. A. 1986; 83: 48-52
        • Uchida E.
        • Ohsumi Y.
        • Anraku Y.
        J. Biol. Chem. 1985; 260: 1090-1095
        • Mandala S.
        • Taiz L.
        J. Biol. Chem. 1986; 261: 12850-12855
        • Zimniak L.
        • Dittrich P.
        • Gogarten J.P.
        • Kibak H.
        • Taiz L.
        J. Biol. Chem. 1988; 263: 9102-9112
        • Takeshige K.
        • Tazawa M.
        • Hager A.
        Plant Physiol. 1988; 86: 1168-1173
        • Butler L.G.
        Boyer P.D. 3rd Ed. The Enzymes. Vol. 4. Academic Press, New York1971: 529-541
        • Volk S.E.
        • Baykov A.A.
        Biochim. Biophys. Acta. 1984; 791: 198-204
        • Nyrén P.
        • Hajnal K.
        • Baltscheffsky M.
        Biochim. Biophys. Acta. 1984; 766: 630-635
        • Maeshima M.
        • Beevers H.
        Plant Physiol. 1985; 79: 489-493
        • Towbin H.
        • Staehelin T.
        • Gordon J.
        Proc. Natl. Acad. Sci. U. S. A. 1979; 76: 4350-4354
        • Nakagawa T.
        • Maeshima M.
        • Muto H.
        • Kajiura H.
        • Hattori H.
        • Asahi T.
        Eur. J. Biochem. 1987; 165: 303-307
        • Hodges T.K.
        • Leonard R.T.
        Methods Enzymol. 1974; 32: 392-406
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        J. Biol. Chem. 1951; 193: 265-275
        • Laemmli U.K.
        Nature. 1970; 227: 680-685
        • Solioz M.
        Trends Biochem. Sci. 1984; 9: 309-312
        • Kimura T.
        • Maeshima M.
        • Asahi T.
        Plant Cell Physiol. 1988; 29: 883-888
        • Randall S.K.
        • Sze H.
        J. Biol. Chem. 1986; 261: 1364-1371
        • Cohen S.A.
        • Sterner R.
        • Keim P.S.
        • Heinrikson R.L.
        J. Biol. Chem. 1978; 253: 889-897
        • Krishnan V.A.
        • Gnanam A.
        Arch. Biochem. Biophys. 1988; 260: 277-284
        • Josse J.
        • Wong S.C.K.
        Boyer P.D. 3rd Ed. The Enzymes. Vol. 4. Academic Press, New York1971: 499-527
        • Smyth D.A.
        • Black C.C.
        Plant Physiol. 1984; 75: 862-864