Signal Integration and Coincidence Detection in the Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase (ERK) Cascade

CONCOMITANT ACTIVATION OF RECEPTOR TYROSINE KINASES AND OF LRP-1 LEADS TO SUSTAINED ERK PHOSPHORYLATION VIA DOWN-REGULATION OF DUAL SPECIFICITY PHOSPHATASES (DUSP1 AND -6)∗

Received for publication, January 15, 2011, and in revised form, May 23, 2011 Published, JBC Papers in Press, May 24, 2011, DOI 10.1074/jbc.M111.221903

Nishamol Geetha‡, Judit Mihaly§, Alexander Stockenhuber†, Francesco Blasi¶, Pavel Uhrin¶, Bernd R. Binder‡‡, Michael Freissmuth¶¶, and Johannes M. Breuss‡

From the ‡Department of Vascular Biology and Thrombosis Research and §Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria and the ¶Department of Molecular Biology and functional Genomics, Dipartimento di Biotecnologia (DiBiT), San Raffaele Scientific Research Institute, 20132 Milan, Italy

Diverse stimuli can feed into the MAPK/ERK cascade: this includes receptor activation, integrin engagement, and of ligand binding to scavenger receptors. The LDL receptor-related protein LRP-1 (also called LRP-52) is a scavenger receptor that binds extracellular matrix components (e.g. heparan sulfate proteoglycans) and provides a platform for receptor clustering. This receptor is well conserved and is present in a variety of cells where it influences the activity of several signaling pathways.

The LDL receptor-related protein, LRP-1, is a scavenger receptor that binds extracellular matrix components and provides a platform for receptor clustering.

This article has been withdrawn by Nishamol Geetha, Judit Mihaly, Alexander Stockenhuber, Francesco Blasi, Pavel Uhrin, Michael Freissmuth, and Johannes M. Breuss. The withdrawing authors regret that Bernd R. Binder passed away. In Fig. 3A, The EGF/LF lanes did not accurately represent the experimental results. The tERK lanes were duplicated in Fig. 3C. The LF lanes were derived from a different immunoblot in Fig. 3D. The pERK and tERK immunoblot from PDGF/LF treatment in Fig. 4B were reused in Fig. 4C for EGF/LF treatment. The DUSP1 and actin immunoblots from untreated cells in Fig. 7A were reused in Fig. 8C. The DUSP6 immunoblot from untreated cells in Fig. 7B was reused in Fig. 8D. In addition, the actin immunoblot from untreated cells in Fig. 7B was reused in Figs. 7C and 8D for the untreated samples. The corrected blots are available upon request.

This work was supported by the Cell Communication in Health and disease (CCHD) doctoral program, which is funded by the Fonds zur Förderung der Wissenschaftlichen Forschung (Austrian Science Fund) and the Medical University of Vienna.

Author’s Choice—Final version full access.

Deceased August 28, 2010.

1 To whom correspondence should be addressed: Center of Physiology and Pharmacology, Währinger Str. 13a, 1090 Vienna, Austria. Tel.: 43-1-4277-64171; Fax: 43-1-4277-9641; E-mail: michael.freissmuth@meduniwien.ac.at.

This is an Open Access article under the CC BY license.
at the third level (i.e. the regulation of DUSP degradation); stimulation of various receptor tyrosine kinases caused an early peak in ERK phosphorylation. This was converted into a sustained rise if cells received concomitant input from LRP-1 and the urokinase/plasminogen activator receptor uPAR. Engagement of both receptors stimulated proteasomal degradation of DUSP1 and DUSP6, which changed not only the temporal but also the spatial pattern of ERK activation.

MATERIALS AND METHODS

Proteins and Antibodies—Fibronectin, vitronectin, and active rhPAI-1 were from Technoclone (Vienna, Austria), and the proteasome inhibitor MG132 was from Sigma-Aldrich. The antibodies recognizing holo-ERK1/2 and phospho-ERK, phospho-SRC (Tyr416), holo-SRC (L4A1, mouse monoclonal), phospho-AKT (Ser473), phospho-AKT (Thr308), and pan-AKT were from Cell Signaling Technologies (Beverly, MA). Antibodies against DUSPs were from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA) or Abcam (Cambridge, UK). Antibodies directed against the integrin subunits β1, β3, β5, and αv were from Chemicon (Temecula, CA). The R3 and R2 antibodies for uPAR domains were provided by Dr. Gunilla Høyer-Hansen (Finsen Laboratory, Copenhagen). EGF was purchased from PromoKine/PromoCell (Heidelberg, Germany), and other tyrosine kinases, like FGF, PDGF, VEGF, and IGF, were from R&D Systems (Minneapolis, MN). Lactoferrin, phorbol 12, 13-acetate (PMA), and crystal violet were purchased from Sigma-Aldrich. The chemiluminescence system used was SuperSignal West Femto Substrate from Thermo Scientific (Waltham, MA). DUSP1 and DUSP6, which changed not only the temporal but also the spatial pattern of ERK activation.

Cell Adhesion Assay—96-well plates were coated with vitronectin (5 μg/ml) in Hanks’ buffered saline for 2 h at 37 °C. Non-specific sites were blocked by the addition of 0.1 ml of 3% BSA in Hanks’ buffered saline for 30 min at 37 °C, followed by two washes in Hanks’ buffered saline solution. Thereafter, HT1080 cells (2 × 10^5/well) were seeded in RPMI containing 0.1% BSA in the presence and absence of stimuli. Cells were incubated for 10, 30, and 60 min at 37 °C and 5% CO₂. Thereafter, the non-adherent cells were aspirated, and the wells were rinsed twice with RPMI containing 0.1% BSA. Attached cells were quantified by adding 5% crystal violet (0.5% in 25% methanol, 50% dimethylsulfoxide). Excess crystal violet was removed twice with RPMI containing 0.1% BSA. Attached cells were rinsed once with distilled water. Plates were left at room temperature to air-dry. Crystal violet pigment was extracted in 50% ethanol for 20 min. Absorbance was determined using a Victor ELISA plate reader (Wallac, Turku, Finland).

Transfections of Cells with siRNA—The ON-TARGETplus siRNA targeting DUSP6 and siGENOME non-targeting siRNAs were purchased from Dharmacon (Lafayette, CO). For siRNA transfection, HT1080 cells were plated in 12-well plates in complete medium. After 12 h, cells were transfected with siRNA at a final concentration of 50 pm using the Xtreme gene transfection reagent (Roche Applied Science) according to the manufacturer’s instructions. 48 h after siRNA transfection, the medium was removed and replaced by serum-free medium containing 0.1% BSA. The cells were serum-starved for 4 h and subsequently stimulated with EGF, lactoferrin, or a combination thereof. The coverslips were mounted onto µSlide cell culture chambers on a heated stage insert on an Olympus AX-70 microscope for time lapse recording of cell migration for 12–15 h with 10 images recorded/h (F-View digital camera, Soft Imaging System). Recorded time lapse sequences were analyzed by assessing the length of the track of every individual cell.

Confocal Microscopy—After the pertinent incubation, cells were fixed in 4% paraformaldehyde and processed as described previously (9). To label ERK, mouse monoclonal antibody to phospho-ERK and rabbit polyclonal antibodies to total ERK were used (Cell Signaling Technology, Beverly, MA). Secondary antibodies used were labeled with Alexa Fluor-488 (anti-rabbit IgG) or Alexa Fluor-568 (anti-mouse IgG). Slides were
mounted in Permafluor (Lab Vision Corp., Fremont, CA). Images were captured at 40- and 100-fold magnification on a Zeiss LSM 510 META confocal microscope in multitrack mode, using pinhole sizes between 0.7 and 1.5 μm and the appropriate standard laser-filter combinations and were digitized using the built-in software.

Statistics—Values are reported as means ± S.E. of three experiments done in duplicate (ERK phosphorylation) or in triplicate to quintuplicate (adhesion assay). Statistically significant differences were verified by paired or unpaired t test and by analysis of variance followed by a Bonferroni post hoc test or Dunnett’s test for multiple comparison, as appropriate.

RESULTS

Combined Stimulation of Cells with EGF and Lactoferrin Induces Sustained ERK2 Activation—The shape and duration of receptor-induced ERK stimulation are highly variable. We surmised that the upstream cascade can integrate additional signals that are translated into distinct time-dependent activity profiles. This conjecture was tested by incubating HT1080 cells (a human fibrosarcoma endowed with several receptor tyrosine kinases) in the presence of the LRP ligand lactoferrin, which per se does not stimulate ERK phosphorylation (Fig. 1A, top, lanes on the right). EGF-induced stimulation of ERK phosphorylation peaked at 5–10 min and then declined to a low residual activity that could be still detected after 2 h (Fig. 1A, top, lanes on the left). However, when EGF was combined with lactoferrin, a sustained activation was observed over >60 min (Fig. 1A, bottom, lanes on the left). In contrast to incubations with EGF alone, the combination of EGF and lactoferrin resulted in ERK phosphorylation that was still detectable after 4 and 16 h. In fact, the time course was comparable with that seen with persistent stimulation of protein kinase C isoforms by the phorbol ester PMA (Fig. 1A, bottom, lanes on the right).

This response was not unique to the fibrosarcoma cell line because it was recapitulated in primary cultures of human skin fibroblasts (Fig. 1B). This suggests that the ERK cascade acted as a coincidence detector and signal integrator that translated the simultaneous occupancy of the EGF receptor and an LDL receptor-related protein into a sustained response. We verified

FIGURE 1. Combined stimulation of HT1080 fibrosarcoma cells (A and C) and normal human skin fibroblasts (B) with either EGF (25 ng/ml) or lactoferrin (LF; 70 μg/ml) alone or in combination for the indicated times. PMA (10 μM) was used as a positive control. Thereafter, the cells were lysed, and the samples were processed as outlined under “Materials and Methods” to detect the active dually phosphorylated ERK (p ERK) and total ERK (t ERK). The blots shown are representative of three independent experiments. The graphs summarize three experiments (error bars, S.E.) in which the chemiluminescence was directly quantified (AlphaImager®) and plotted as normalized values of phospho-ERK to total ERK as a percentage of control.
Occupancy of LRP-1 Promotes Sustained ERK Activation

FIGURE 2. Combined stimulation of HT1080 cells with lactoferrin does not induce a sustained activation of ERK.

HT1080 fibrosarcoma cells were stimulated with EGF (25 ng/ml), IGF2 (100 ng/ml), and VEGF 165 (50 ng/ml) (data not shown). Although we did not examine additional signaling pathways (e.g., activation of phospholipase Cγ), these observations suggest that the signal amplification caused by lactoferrin does not indiscriminately involve all possible pathways but appears to be confined to MAPK activation.

Sustained ERK Activation Depends on LRP-1—The association of ligands with LRP can be blocked by receptor-associated protein (RAP) (10). If the action of lactoferrin and of LDL were mediated via interaction with an LRP family member, it ought to be blunted by preincubation of the cells in the presence of RAP. This was the case (Fig. 3A). There are several family members of the LDL receptor-related protein family. Earlier observations indicated complex formation between LRP-1 and the PDGF receptor (2, 11). Hence, we substantiated the conjecture that LRP-1 might be required also for supporting the lactoferrin-promoted augmentation of EGF-induced ERK phosphorylation by using MEFs isolated from mice deficient in LRP-1 and/or LDL receptor. In the wild type MEFs (Fig. 3B), MEFs lacking LDL receptor respond to the combination of EGF and lactoferrin with sustained ERK activation (Fig. 3C). In fact, in the absence of LDL receptor, the response to lactoferrin blunted the response to EGF alone (data not shown). Although we did not examine additional signaling pathways (e.g., activation of phospholipase Cγ), these observations suggest that the signal amplification caused by lactoferrin does not indiscriminately involve all possible pathways but appears to be confined to MAPK activation.

Sustained ERK Activation Depends on LRP-1—The association of ligands with LRP can be blocked by receptor-associated protein (RAP) (10). If the action of lactoferrin and of LDL were mediated via interaction with an LRP family member, it ought to be blunted by preincubation of the cells in the presence of RAP. This was the case (Fig. 3A). There are several family members of the LDL receptor-related protein family. Earlier observations indicated complex formation between LRP-1 and the PDGF receptor (2, 11). Hence, we substantiated the conjecture that LRP-1 might be required also for supporting the lactoferrin-promoted augmentation of EGF-induced ERK phosphorylation by using MEFs isolated from mice deficient in LRP-1 and/or LDL receptor. In the wild type MEFs (Fig. 3B), MEFs lacking LDL receptor respond to the combination of EGF and lactoferrin with sustained ERK activation (Fig. 3C). In fact, in the absence of LDL receptor, the response to lactoferrin blunted the response to EGF alone (data not shown). Although we did not examine additional signaling pathways (e.g., activation of phospholipase Cγ), these observations suggest that the signal amplification caused by lactoferrin does not indiscriminately involve all possible pathways but appears to be confined to MAPK activation.

Sustained ERK Activation Depends on LRP-1—The association of ligands with LRP can be blocked by receptor-associated protein (RAP) (10). If the action of lactoferrin and of LDL were mediated via interaction with an LRP family member, it ought to be blunted by preincubation of the cells in the presence of RAP. This was the case (Fig. 3A). There are several family members of the LDL receptor-related protein family. Earlier observations indicated complex formation between LRP-1 and the PDGF receptor (2, 11). Hence, we substantiated the conjecture that LRP-1 might be required also for supporting the lactoferrin-promoted augmentation of EGF-induced ERK phosphorylation by using MEFs isolated from mice deficient in LRP-1 and/or LDL receptor. In the wild type MEFs (Fig. 3B), MEFs lacking LDL receptor respond to the combination of EGF and lactoferrin with sustained ERK activation (Fig. 3C). In fact, in the absence of LDL receptor, the response to lactoferrin blunted the response to EGF alone (data not shown). Although we did not examine additional signaling pathways (e.g., activation of phospholipase Cγ), these observations suggest that the signal amplification caused by lactoferrin does not indiscriminately involve all possible pathways but appears to be confined to MAPK activation.

Sustained ERK Activation Depends on LRP-1—The association of ligands with LRP can be blocked by receptor-associated protein (RAP) (10). If the action of lactoferrin and of LDL were mediated via interaction with an LRP family member, it ought to be blunted by preincubation of the cells in the presence of RAP. This was the case (Fig. 3A). There are several family members of the LDL receptor-related protein family. Earlier observations indicated complex formation between LRP-1 and the PDGF receptor (2, 11). Hence, we substantiated the conjecture that LRP-1 might be required also for supporting the lactoferrin-promoted augmentation of EGF-induced ERK phosphorylation by using MEFs isolated from mice deficient in LRP-1 and/or LDL receptor. In the wild type MEFs (Fig. 3B), MEFs lacking LDL receptor respond to the combination of EGF and lactoferrin with sustained ERK activation (Fig. 3C). In fact, in the absence of LDL receptor, the response to lactoferrin blunted the response to EGF alone (data not shown). Although we did not examine additional signaling pathways (e.g., activation of phospholipase Cγ), these observations suggest that the signal amplification caused by lactoferrin does not indiscriminately involve all possible pathways but appears to be confined to MAPK activation.
Cytoplasmic Accumulation of Phospho-ERK Translates into Accelerated Adhesion on Vitronectin—ERK phosphorylation promotes nuclear translocation of the enzyme (14). This was also seen if HT1080 cells were stimulated by EGF (Fig. 5, cf. first and second row). The sole addition of lactoferrin did not affect the distribution of ERK (Fig. 5, row 3). Surprisingly, the combination of EGF and lactoferrin resulted in a delayed translocation of active phosphorylated ERK into the nucleus; for the first 60 min, there was little appreciable translocation of phospho-ERK into the nucleus (Fig. 5, cf. rows 4–6 with control rows 1 and 2), whereas it accumulated in the perinuclear region and most prominently at submembraneous spots. After prolonged stimulation with EGF and lactoferrin, phosphorylated ERK did accumulate in the nucleus (Fig. 5, bottom row).

The observations suggested that the stimulation of cells by the combination of EGF and lactoferrin initially redirected ERK signaling to cytosolic targets. Cytosolic ERK has many targets, and several of these are involved in actin dynamics (15), such that ERK plays a prominent role in integrin-dependent adhesion (16). Accordingly, we evaluated whether the combined addition of EGF and lactoferrin promoted cell adhesion. This was the case; at early time points (10 min), the number of cells that adhered to vitronectin-coated dishes was augmented (Fig. 6A, white bars). In contrast, neither EGF nor lactoferrin by themselves affected cell adhesion at this early time point. Thus, increased cytosolic phosphorylated ERK (levels) translated into a relevant biological response, namely accelerated cell adhesion promoted by the combination of EGF and lactoferrin. Blockage of the MAPK cascade ought to blunt the response to the combination of EGF and lactoferrin if there were a cause-and-effect relation between cytosolic accumulation of MAPK and enhanced adhesion. This prediction was verified by employing the MEK1 inhibitor PD98059. Pretreatment of cells with 25 μM PD98059 for 30 min reduced the number of adherent cells by about 50% if cells were stimulated by EGF and lactoferrin; in contrast, PD98059 had no appreciable effect on cell adhesion.
under any of the other conditions tested (Fig. 6A, black bars). EGF (17) and uPAR (18) stimulate cell migration via stimulation of the MAPK cascade. Accordingly, we allowed HT1080 cells to adhere on vitronectin and subsequently examined over the next 15 h by time lapse microscopy whether the combination of EGF and lactoferrin had a stronger chemokinetic effect than the sole addition of EGF. In fact, trajectories of cells were significantly longer in the presence of EGF and lactoferrin than when each compound was added separately (Fig. 6B). We also examined directed migration induced by wounding a cell monolayer. The combination of EGF and lactoferrin also resulted in accelerated migration (data not shown).

Proteasomal Degradation of DUSPs Accounts for Sustained ERK Activation in Response to EGF and Lactoferrin—The magnitude and duration of MAPK signaling is dependent on the balance between the activities of upstream activators and deactivation by phosphatases. Because phosphorylation of both threonine and tyrosine residues is required for activity, dephosphorylation of either is sufficient for inactivation. This is achieved by dual specificity (threonine/tyrosine) protein phosphatases (DUSPs) (19). DUSPs differ in their affinity for individual MAPKs. ERK1/2 can be dephosphorylated by the inducible DUSP1, DUSP4, and DUSP5, which are found primarily in the nucleus, and by the cytosolic isoforms DUSP6, DUSP7, and DUSP9 (20). Sustained activation of ERK2 via the combined input from a tyrosine kinase receptor and LRP-1 may be due to a decline in DUSP levels. We tested this hypothesis by assessing the effect of combined stimulation with EGF and lactoferrin on the amount of DUSP in lysates of HT1080 cells. Incubation with EGF and lactoferrin led to a pronounced and sustained downregulation of the nuclear DUSP1 (Fig. 7A) and of the cytosolic DUSP6 (Fig. 7B). The capacity of LRP-1 ligands to synergize with tyrosine kinase receptor ligands was not limited to lactoferrin but was also recapitated in the presence of LDL (cf. Fig. 1C). Thus, when combined with EGF, LDL was predicted to cause a similar decline in DUSP levels if the decline in DUSP levels and the change in ERK phosphorylation were causally related. This was the case (Fig. 7, A and B). In contrast, stimu-
lation with EGF alone caused only a transient reduction in the levels of DUSP1 and DUSP6, whereas lactoferrin alone did not affect the expression levels of DUSP1 and DUSP6 (open diamonds in Fig. 7, A and B). We also verified that the combination of EGF and lactoferrin did not result in an indiscriminate loss of all DUSP isoforms. There was, for instance, no appreciable change in the levels of the nuclear isoform DUSP5 (Fig. 7C), DUSP7, and DUSP9 (data not shown).

The down-regulation of DUSP1 and DUSP6 occurred swiftly (i.e. it was detectable within 10 min). An obvious explanation...
for this rapid decline was proteolytic degradation via the proteasome. In fact, when cells had been pretreated with the proteasome inhibitor MG132 (10 μM), DUSP levels were not decreased upon combined stimulation with EGF (25 ng/ml) and/or lactoferrin (70 μg/ml) plated on vitronectin-coated plastic dishes. After 10 min, cells were removed by aspiration, and the adherent cell population was stained with crystal violet. Cell adhesion was quantified by determining the absorbance at 540 nm in an ELISA plate reader. Values represent mean absorbance (error bars, S.E.) (n = 4). Statistical significance was assessed by analysis of variance followed by Dunnett’s multiple comparison test, which documented a statistically significant effect of EGF/lactoferrin versus control and a statistically significant inhibition of this stimulation by PD98059 (p < 0.01).

We also observed that the MEK1 inhibitor PD98059 increased DUSP6 protein levels and suppressed the DUSP6 degradation triggered by the combination of EGF and lactoferrin (data not shown). The LRP-1-induced switch to sustained ERK phosphorylation was contingent on concomitant input via the uPA/uPAR system (Fig. 4). This provided an additional test for the relation between DUSP down-regulation and sustained ERK signaling: blockade of uPAR by the antibody R3 directed against domain 1 of uPAR precluded the down-regulation of DUSP1 and DUSP6 (Fig. 8, C and D).

for this rapid decline was proteolytic degradation via the proteasome. In fact, when cells had been pretreated with the proteasome inhibitor MG132 (10 μM), DUSP levels were not decreased upon combined stimulation with EGF and lactoferrin or LDL (Fig. 7, A and B). Similar findings were obtained with cells that had been incubated with FGF and lactoferrin or LDL (Fig. 8, A and B). We also observed that the MEK1 inhibitor PD98059 increased DUSP6 protein levels and suppressed the DUSP6 degradation triggered by the combination of EGF and lactoferrin (data not shown). The LRP-1-induced switch to sustained ERK phosphorylation was contingent on concomitant input via the uPA/uPAR system (Fig. 4). This provided an additional test for the relation between DUSP down-regulation and sustained ERK signaling: blockade of uPAR by the antibody R3 directed against domain 1 of uPAR precluded the down-regulation of DUSP1 and DUSP6 (Fig. 8, C and D).

for this rapid decline was proteolytic degradation via the proteasome. In fact, when cells had been pretreated with the proteasome inhibitor MG132 (10 μM), DUSP levels were not decreased upon combined stimulation with EGF and lactoferrin or LDL (Fig. 7, A and B). Similar findings were obtained with cells that had been incubated with FGF and lactoferrin or LDL (Fig. 8, A and B). We also observed that the MEK1 inhibitor PD98059 increased DUSP6 protein levels and suppressed the DUSP6 degradation triggered by the combination of EGF and lactoferrin (data not shown). The LRP-1-induced switch to sustained ERK phosphorylation was contingent on concomitant input via the uPA/uPAR system (Fig. 4). This provided an additional test for the relation between DUSP down-regulation and sustained ERK signaling: blockade of uPAR by the antibody R3 directed against domain 1 of uPAR precluded the down-regulation of DUSP1 and DUSP6 (Fig. 8, C and D).
The combination of EGF and lactoferrin increased DUSP degradation and triggered sustained ERK activation. Thus, down-regulation of DUSPs ought to lead to a sustained EGF response. We focused on DUSP6 because this is the cytosolic isoform, the down-regulation of which ought to phenocopy the combined effect of lactoferrin and EGF. DUSP6 levels were reduced by using an appropriate siRNA (Fig. 9A). Silencing of DUSP6 led to a sustained activation of ERK with EGF alone; there was not any appreciable difference in the time course of phospho-ERK accumulation in cells that had been stimulated by the sole addition of EGF or by the combination of EGF and lactoferrin (Fig. 9B). This was not the case in cells transfected with a control siRNA (Fig. 9C) or untransfected cells, which were examined in parallel (Fig. 9D).

If sustained ERK activation induced by combined stimulation with EGF and lactoferrin were indeed the result of proteasomal degradation of DUSP1 and/or DUSP6, blockage of the proteasome ought to prevent sustained activation. This prediction was verified by treating cells with the proteasome inhibitor MG132 prior to stimulation by EGF, lactoferrin, or a combination thereof. Inhibition of the proteasome by MG132 did not affect the response to EGF (Fig. 10, cf. A and B, left). In contrast, in cells challenged by the combined addition of EGF and lactoferrin, pretreatment with MG132 precluded sustained ERK phosphorylation (Fig. 10B, right). Phospho-ERK levels declined more rapidly after the initial peak than in untreated cells (Fig. 10A, right).

DISCUSSION

The ERK cascade plays a central role in mitogenic signaling. It has attracted interest because input via extracellular signal is translated into both a spatial and a temporal dimension. This concept was originally developed with the study of PC12 differentiation (14) and probed rigorously by rewiring the signaling network (21); the rat pheochromocytoma cell line PC12 is differentiated by NGF because this agonist causes a very long-lasting stimulation of ERK activity. In contrast, the kinetics of EGF-induced ERK phosphorylation supplies a stimulus for cell division. In addition, the ERK cascade displays hysteresis and bistability. It is therefore capable of storing information and converting an analog signal (the graded concentration of mitogen) to a digital output; regardless of whether differentiation or...
cell division is examined, if the activity has reached a critical threshold, an irreversible decision is made. The cell undergoes replication or differentiates. It is therefore interesting to understand how the kinetics of ERK activation is controlled. Because the ERK signaling pathway receives input from several pathways, it allows for signal integration; irrespective of the source of the upstream input, it is converted into an analog signal, namely the enzymatic activity of the dually phosphorylated ERK. Thus, the integral of the input is encoded in the strength of the output signal. Because ERK is subject to deactivation by dephosphorylation and because it drives irreversible decisions, it also allows for coincidence detection; thresholds may only be reached if two signals are present at the same time. Thus, in the original model of PC12 cell differentiation, the ERK cascade also acted as a coincidence detector; the simultaneous presence of cAMP converted the EGF-driven output from proliferation to differentiation (14).

Previous investigations have focused on the cross-talk with G protein-coupled receptors. These studies have provided evidence for trans-activation (22), for release of growth factors via the release of latent membrane-bound growth factors (23), and for second messenger-driven loops (14, 24). More recently, the
Occupancy of LRP-1 Promotes Sustained ERK Activation

cooperation between two receptor tyrosine kinases has been subjected to a rigorous analysis (25). Here we show that input via LRP-1 and uPAR can substantially alter the temporal shape of the ERK response. These observations underscore the function of the cascade as a signal integrator and coincidence detector; our experiments demonstrated that the absence or presence of two additional signals (i.e. engagement of the LRP-1 receptor and input via the urokinase receptor uPAR) produced a temporally and spatially distinct pattern of enzyme activation (i.e. sustained phosphorylation of ERK that was initially confined to the cytoplasm). Although these findings are consistent with the predictions arising from the analysis of the network properties (26), there are, to the best of our knowledge, no earlier reports that document this type of cooperation between LRP-1 and receptor tyrosine kinases. However, the results from our experiments are unequivocal. The simultaneous activation of the EGF receptor and the engagement of LRP-1 profoundly affected the temporal and spatial pattern of ERK phosphorylation. This response was not confined to the ErbB family of receptor kinases but was found with all receptor tyrosine kinases examined, indicating that it is a universal phenomenon. The very mechanism by which this effect is brought about is also consistent with the following generalization. The occupancy of LRP-1 triggers degradation of DUSP1 and DUSP6 via proteasomal degradation. This effect is predicted to enhance ERK phosphorylation by receptor tyrosine kinases regardless of the nature of the upstream input.

Interestingly, the sustained response required input via both the urokinase/plasminogen activator receptor uPAR and LRP-1; although we did not study the detailed mechanism underlying this cooperation, our experiments document that neither sustained ERK phosphorylation nor LRP-1-triggered degradation of DUSP1 and DUSP6 occurred if signaling either via uPAR or via LRP-1 was abrogated. Both DUSP1 (MAPK phosphatase-1, MKP-1) and DUSP6 (MKP-3) are subject to regulation by the ERK cascade because phosphorylation of DUSP6 occurs if signaling via uPAR or via LRP-1 is triggered (29, 30) by MEK1/ERK activation and hence to promote the switch from phosphorylated forms of DUSP1 to the dephosphorylated forms of ERK and its nuclear translocation results in enhanced transcription of DUSP1 and hence to feedback inhibition (27, 30). The decay of these two events shapes, at least in part, the spatiotemporal wave of ERK activation. Closely related receptor tyrosine kinases have been noted to differ in their ability to trigger the feed-forward and the feedback limb; PDGFRβ elicited a less pronounced decline in DUSP6 levels and thus a more sustained ERK activation than PDGFRα (30). Our experiments are in line with these observations and highlight the importance of the two limbs for regulating the steady state levels of DUSP1 and DUSP6. (i) Coincident input via LRP-1 and uPAR led to a rapid degradation of DUSP1 and DUSP6, which accounted for the sustained ERK phosphorylation. (ii) Blockage of the proteasome unmasked the concomitant induction of DUSP1 and DUSP6 expression. Accordingly, DUSP levels exceeded those seen in control cells. Surprisingly, the decline in DUSP1 was not matched by enhanced nuclear accumulation of phospho-ERK in cells stimulated by the combined addition of EGF and lactoferrin. In fact, ERK was efficiently translocated into the nucleus, but it appeared to be subject to rapid dephosphorylation, resulting in the nuclear accumulation of ERK rather than phospho-ERK immunoreactivity. As noted, the levels of DUSP5, another nuclear phosphatase, did not change, and this may be the phosphatase that deactivates ERK in cells subjected to combined stimulation of receptor tyrosine kinases and LRP-1. This possibility is currently being explored.

Sustained ERK phosphorylation predisposes to dysregulated cell growth; in fact, persistent activation of the ERK cascade, mostly via RAS and RAF mutations, is found in many cancers (31). There are also some instances where the low expression or loss of DUSP isoforms has been observed in various human cancer forms (e.g. DUSP1 in cells derived from esophagogastric...
cancer metastases (32), DUSP2 in leukemia (33), DUSP4 in pancreatic (34) and breast cancer (35), and DUSP6 in pancreatic intraepithelial neoplasia and/or intraductal papillary-mucinous neoplasms (36)). Ligands that are cleared by LRP-1 are abundantly present in human body fluids; these include, among others, LDL and PAI-1 (the plasminogen activator-inhibitor). Obesity is known to be an independent risk factor for cancer (37), and this may, in part, be mediated by elevated LDL cholesterol (38). Similarly, elevated levels of PAI-1 are an independent prognostic marker for cancer progression; this is also true for uPA (39). It is attractive to speculate that the current observations may also be of relevance to the situation; in this model, elevated levels of LRP-1 ligands in conjunction with uPA/uPAR may also enhance MAPK signaling by growth factor and thus promote the emergence of clinically manifest cancer.

REFERENCES