Advertisement

Specificity of G protein beta and gamma subunit interactions.

Open AccessPublished:July 15, 1992DOI:https://doi.org/10.1016/S0021-9258(19)49638-5
      This paper is only available as a PDF. To read, Please Download here.
      Multiple heterotrimeric guanine nucleotide binding protein (G protein) subunits have evolved to couple a large variety of receptors to intracellular effectors. G protein beta gamma subunits are essential for efficient coupling of alpha subunits to receptors, and they are also important for modulation of effectors. Several different beta and gamma subunits exist, but it is not known whether all possible combinations of beta and gamma can form functional dimers. To answer this question, we have compared the ability of in vitro translated beta 1, beta 2, and beta 3 to form dimers with either gamma 1 or gamma 2. Dimerization was monitored by gel filtration, resistance to tryptic digestion, and chemical cross-linking. The results indicate that beta 1 binds both gamma subunits, beta 2 binds only gamma 2, and beta 3 will bind neither gamma 1 or gamma 2. Hence, the occurrence of beta gamma dimers may be partially regulated by the ability of the subunits to associate. Specificity of dimerization might allow cells to co-express multiple beta and gamma subunits while maintaining efficient and specific signal transduction.

      References

        • Amatruda III, T.T.
        • Gautam N.
        • Fong H.K.W.
        • Northup J.K.
        • Simon M.I.
        J. Biol. Chem. 1988; 263: 5008-5011
        • Christy Jr., K.G.
        • LaTart D.B.
        • Osterhoudt H.J.
        Biotechniques. 1989; 7: 692-693
        • Fawzi A.B.
        • Fay D.S.
        • Murphy E.A.
        • Tamir H.
        • Erdos J.J.
        • Northup J.K.
        J. Biol. Chem. 1991; 266: 12194-12200
        • Federman A.D.
        • Conklin B.R.
        • Schrader K.A.
        • Reed R.R.
        • Bourne H.R.
        Nature. 1992; 356: 159-161
        • Fong H.K.W.
        • Hurley J.B.
        • Hopkins R.S.
        • Miake-Lye R.
        • Johnson M.A.
        • Doolittle R.F.
        • Simon M.K.
        Proc. Natl. Acad. Sci. U. S. A. 1986; 83: 2162-2166
        • Fung B.K-K.
        • Nash C.R.
        J. Biol. Chem. 1983; 258: 10503-10510
        • Gao B.
        • Gilman A.G.
        • Robishaw J.
        Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 6122-6125
        • Gautam N.
        • Baetscher M.
        • Aebersold R.
        • Simon M.I.
        Science. 1989; 244: 971-974
        • Gautam N.
        • Northup J.
        • Tamir H.
        • Simon M.I.
        Proc. Natl. Acad. Sci U. S. A. 1990; 87: 7973-7977
        • Gillespie P.G.
        • Beavo J.A.
        J. Biol. Chem. 1988; 263: 8133-8141
        • Hurley J.B.
        • Fong H.K.W.
        • Teplow D.B.
        • Dreyer W.J.
        • Simon M.I.
        Proc. Natl. Acad. Sci. U. S. A. 1984; 81: 6948-6952
        • Hurwitz R.L.
        • Bunt-Milman A.H.
        • Chang M.L.
        • Beavo J.A.
        J. Biol. Chem. 1984; 260: 568-573
        • Jelsema C.K.
        • Axelrod J.
        Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 3623-3627
        • Kim D.
        • Lewis D.L.
        • Graziadei L.
        • Neer E.J.
        • Bar-Sagi D.
        • Clapham D.E.
        Nature. 1989; 337: 557-560
        • Laemmli U.K.
        Nature. 1970; 227: 680-685
        • Lerea C.L.
        • Somers D.E.
        • Hurley J.B.
        • Klock I.B.
        • Bunt-Milam A.H.
        Science. 1986; 234: 77-80
        • Levine M.A.
        • Smallwood P.M.
        • Moen P.T.
        • Helman L.J.
        • Ahn T.G.
        Proc. Natl. Acad. Sci. U. S. A. 1990; 87: 2329-2333
        • Li T.
        • Volpp K.
        • Applebury M.L.
        Proc. Natl. Acad. Sci. U. S. A. 1990; 87: 293-297
        • Logothetis D.E.
        • Kim D.
        • Northup J.K.
        • Neer E.J.
        • Clapham D.E.
        Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 5814-5818
        • Maltese W.A.
        • Robishaw J.D.
        J. Biol. Chem. 1990; 265: 18071-18074
        • Mumby S.M.
        • Casey P.J.
        • Gilman A.G.
        • Gutowski S.
        • Sternweis P.C.
        Proc. Natl. Acad. Sci. U. S. A. 1990; 87: 5983-5987
        • Nathans J.
        Annu. Rev. Neurosci. 1987; 10: 163-294
        • Robishaw J.D.
        • Kalman V.K.
        • Moomaw C.R.
        • Slaughter C.R.
        J. Biol. Chem. 1989; 264: 15758-15761
        • Sanford J.
        • Codina J.
        • Birnbaumer L.
        J. Biol. Chem. 1991; 266: 9570-9579
        • Schmidt C.J.
        • Neer E.J.
        J. Biol. Chem. 1991; 266: 4538-4544
        • Tang W-J.
        • Gilman A.G.
        Science. 1991; 254: 1500-1503
        • von Weizsacker E.
        • Strathmann M.P.
        • Simon M.I.
        Biochem. Biophys. Res. Commun. 1992; 183: 350-356
        • Winslow J.W.
        • Van Amsterdam J.R.
        • Neer E.J.
        J. Biol. Chem. 1986; 261: 7571-7579
        • Yamazaki A.
        • Tatsumi M.
        • Torney D.C.
        • Bietenski M.W.
        J. Biol. Chem. 1987; 262: 9316-9323
        • Yi F.
        • Denker B.M.
        • Neer E.J.
        J. Biol. Chem. 1991; 266: 3900-3906