Introduction
- Reusken C.B.
- Farag E.A.
- Jonges M.
- Godeke G.J.
- El-Sayed A.M.
- Pas S.D.
- Raj V.S.
- Mohran K.J.
- Moussa H.A.
- Ghobashy H.
- Alhajri F.
- Ibrahim A.K.
- Bosch B.J.
- Pasha S.K.
- Al-Romaihi H.E.
- Al-Thani M.
- Al-Marri S.A.
- AlHajri M.M.
- Haagmans B.L.
- Koopmans M.P.
S. van Boheemen, M. de Graaf, C. Lauber, T.M. Bestebroer, V.S. Raj, A.M. Zaki, A.D. Osterhaus, B.L. Haagmans, A.E. Gorbalenya, E.J. Snijder, R.A. Fouchier (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio. 10.1128/mBio.00473-12.
S. van Boheemen, M. de Graaf, C. Lauber, T.M. Bestebroer, V.S. Raj, A.M. Zaki, A.D. Osterhaus, B.L. Haagmans, A.E. Gorbalenya, E.J. Snijder, R.A. Fouchier (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio. 10.1128/mBio.00473-12.
D. Goubau, M. Schlee, S. Deddouche, A.J. Pruijssers, T. Zillinger, M. Goldeck, C. Schuberth, A.G. Van der Veen, T. Fujimura, J. Rehwinkel, J.A. Iskarpatyoti, W. Barchet, J. Ludwig, T.S. Dermody, G. Hartmann, C.R. Sousa (2014) Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature. 10.1038/nature13590.
- Chu H.
- Zhou J.
- Ho-Yin Wong B.
- Li C.
- Cheng Z.-S.
- Lin X.
- Kwok-Man Poon V.
- Sun T.
- Choi-Yi Lau C.
- Fuk-Woo Chan J.
- Kai-Wang To K.
- Chan K.-H.
- Lu L.
- Zheng B.-J.
- Yuen K.-Y.
- Lau S.K.
- Lau C.C.
- Chan K.H.
- Li C.P.
- Chen H.
- Jin D.Y.
- Chan J.F.
- Woo P.C.
- Yuen K.Y.
EXPERIMENTAL PROCEDURES
Cells, Antibodies, and Plasmids
Construction of MERS-CoV PLpro Expression Plasmids
Purification of MERS-CoV PLpro and in Vitro DUB Activity Assay
Expression and Purification of MERS-CoV PLpro for Crystallization
Covalent Coupling of Ub to PLpro
Crystallization of PLpro and PLpro·Ub Complexes
Data Collection and Structure Determination
Crystal | PLpro | Open PLpro·Ub | Closed PLpro·Ub |
---|---|---|---|
Crystal geometry | |||
Space group | P63 | P63 | P6522 |
Unit cell (Å) | a = b = 137.94 c = 57.70; α = β = 90° γ = 120° | a = b = 136.77 c = 57.99; α = β = 90° γ = 120° | a = b = 176.92 c = 84.55; α = β = 90° γ = 120° |
Crystallographic data | |||
Wavelength (Å) | 1.28294 | 1.28280 | 1.28219 |
Resolution range (Å) | 45.15–2.60 (2.90–2.80) | 44.23–2.15 (2.22–2.15) | 44.24–2.60 (2.90–2.80) |
Total observations | 137,170 (13,780) | 124,058 (12,315) | 283,649 (28,118) |
Unique reflections | 15,683 (1566) | 33,472 (3291) | 19,694 (1918) |
Multiplicity | 8.7 (8.8) | 3.7 (3.7) | 14.4 (14.7) |
Completeness (%) | 100.00 (100.00) | 98.73 (98.12) | 99.97 (100) |
Anomalous completeness | 99.4 (98.5) | 92.4 (92.6) | 100 (100) |
Rmerge | 0.085 (0.76) | 0.041 (0.79) | 0.061 (0.78) |
CC1/2 | 0.99 (0.83) | 0.99 (0.54) | 1 (0.93) |
CC* | 0.99 (0.95) | 1 (0.84) | 1 (0.98) |
I/σI | 17.13 (3.42) | 20.52 (1.97) | 34.01 (3.69) |
Wilson B-factor (Å2) | 75.15 | 46.79 | 74.96 |
Phasing statistics | |||
Figure of merit | 0.12 | 0.18 | 0.23 |
Figure of merit after RESOLVE | 0.64 | 0.63 | 0.67 |
Refinement statistics | |||
Reflections in test set | 1570 | 1996 | 1609 |
Protein atoms | 2384 | 3020 | 3020 |
Zinc atoms | 1 | 1 | 1 |
Solvent molecules | 26 | 205 | 65 |
Rwork (Rfree) | 0.23 (0.27) | 0.20 (0.23) | 0.24 (0.28) |
Root mean square deviations | |||
Bond lengths/angles (Å/degrees) | 0.002/0.60 | 0.002/0.52 | 0.002/0.54 |
Ramachandran plot | |||
Favored/allowed (%) | 95/5 | 95/5 | 93/7 |
Average B-factor (Å2) | 76.70 | 66.80 | 86.50 |
B-Factor for macromolecules | 76.70 | 69.20 | 86.60 |
B-Factor for solvent | 76.65 | 65.40 | 84.20 |
Protease Activity Assays in Cell Culture
Luciferase-based IFN-β Reporter Assay
RESULTS
DUB Activity of Recombinant MERS-CoV PLpro

Crystal Structures of MERS-CoV PLpro and PLpro·Ub Complexes
MERS-CoV PLpro

PLpro Covalently Bound to Ub


PLpro Active Site Organization and Interaction with the C-terminal RLRGG Motif of Ub

Structure-guided Design of PLpro Mutants Defective in DUB Activity

Targeted Mutations within the PLpro·Ub Binding Site Disrupt Ub Processing but Not Proteolytic Cleavage of the nsp3↓4 Site

PLpro DUB Activity Suppresses the Innate Immune Response


DISCUSSION
Acknowledgments
REFERENCES
- Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.N. Engl. J. Med. 2012; 367: 1814-1820
- World Health Organization, Geneva2014 Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Update (United Arab Emirates).
- World Health Organization, Geneva2003 Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July 2003.
- Evidence for camel-to-human transmission of MERS coronavirus.N. Engl. J. Med. 2014; 370: 2499-2505
- Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014.Euro Surveill. 2014; 19: 20829
S. van Boheemen, M. de Graaf, C. Lauber, T.M. Bestebroer, V.S. Raj, A.M. Zaki, A.D. Osterhaus, B.L. Haagmans, A.E. Gorbalenya, E.J. Snijder, R.A. Fouchier (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio. 10.1128/mBio.00473-12.
- Non-canonical translation in RNA viruses.J. Gen. Virol. 2012; 93: 1385-1409
- Coronaviruses post-SARS: update on replication and pathogenesis.Nat. Rev. Microbiol. 2009; 7: 439-450
- Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease.J. Gen. Virol. 2014; 95: 614-626
- Assessing activity and inhibition of Middle East respiratory syndrome coronavirus papain-like and 3C-like proteases using luciferase-based biosensors.J. Virol. 2013; 87: 11955-11962
- The ubiquitin code.Annu. Rev. Biochem. 2012; 81: 203-229
- Breaking the chains: structure and function of the deubiquitinases.Nat. Rev. Mol. Cell Biol. 2009; 10: 550-563
- Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-κB signaling.J. Virol. 2009; 83: 6689-6705
- The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity.J. Virol. 2005; 79: 15189-15198
- Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases.J. Virol. 2010; 84: 4619-4629
- MERS-CoV papain-like protease has deISGylating and deubiquitinating activities.Virology. 2014; 450: 64-70
- The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme.J. Virol. 2005; 79: 15199-15208
- Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease.Arch. Biochem. Biophys. 2007; 466: 8-14
A.M. Mielech, Y. Chen, A.D. Mesecar, S.C. Baker (2014) Nidovirus papain-like proteases: Multifunctional enzymes with protease, deubiquitinating and deISGylating activities. Virus Res. 10.1016/j.virusres.2014.01.025.
- Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion.J. Virol. 2012; 86: 2900-2910
D. Goubau, M. Schlee, S. Deddouche, A.J. Pruijssers, T. Zillinger, M. Goldeck, C. Schuberth, A.G. Van der Veen, T. Fujimura, J. Rehwinkel, J.A. Iskarpatyoti, W. Barchet, J. Ludwig, T.S. Dermody, G. Hartmann, C.R. Sousa (2014) Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature. 10.1038/nature13590.
- The role of ubiquitylation in immune defence and pathogen evasion.Nat. Rev. Immunol. 2012; 12: 35-48
- Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus.J. Biol. Chem. 2007; 282: 32208-32221
- Inhibition of β interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3.J. Virol. 2005; 79: 2079-2086
- Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus.Virol. J. 2006; 3 (17): 17
- Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis.J. Virol. 2005; 79: 7819-7826
- Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response.Virology. 2014; 454: 197-205
- Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures.J. Virol. 2013; 87: 6604-6614
- Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment.J. Gen. Virol. 2013; 94: 2679-2690
- Arterivirus and nairovirus ovarian tumor domain-containing Deubiquitinases target activated RIG-I to control innate immune signaling.J. Virol. 2012; 86: 773-785
- The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent.Nucleic Acids Res. 2010; 38: 203-214
- Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I.Cell Host Microbe. 2009; 5: 439-449
- IKKϵ and TBK1 are essential components of the IRF3 signaling pathway.Nat. Immunol. 2003; 4: 491-496
- TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity.Nature. 2007; 446: 916-920
- Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3.Cell. 2005; 122: 669-682
- Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation.Mol. Cell Biol. 1998; 18: 2986-2996
- Production of “authentic” poliovirus RNA-dependent RNA polymerase (3D(pol)) by ubiquitin-protease-mediated cleavage in Escherichia coli.Protein Expr. Purif. 1999; 17: 128-138
- Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein.J. Biol. Chem. 2008; 283: 11038-11049
- Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family.Chem. Biol. 2002; 9: 1149-1159
- XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 125-132
- Scaling and assessment of data quality.Acta Crystallogr. D Biol. Crystallogr. 2006; 62: 72-82
- Substructure search procedures for macromolecular structures.Acta Crystallogr. D Biol. Crystallogr. 2003; 59: 1966-1973
- Maximum-likelihood density modification.Acta Crystallogr. D Biol. Crystallogr. 2000; 56: 965-972
- Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard.Acta Crystallogr. D Biol. Crystallogr. 2009; 65: 582-601
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 486-501
- Towards automated crystallographic structure refinement with phenix.refine.Acta Crystallogr. D Biol. Crystallogr. 2012; 68: 352-367
- A new technique for the assay of infectivity of human adenovirus 5 DNA.Virology. 1973; 52: 456-467
- Structural and functional characterization of MERS coronavirus papain-like protease.J. Biomed. Sci. 2014; 21: 54
- Crystal structure of the papain-like protease of MERS coronavirus reveals unusual, potentially druggable active-site features.Antiviral Res. 2014; 109: 72-82
- Catalytic function and substrate specificity of the PLpro domain of nsp3 from the Middle East respiratory syndrome coronavirus (MERS-CoV).J. Virol. 2014; 88: 12511-12527
- Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme.Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 5717-5722
- The role of UBL domains in ubiquitin-specific proteases.Biochem. Soc. Trans. 2012; 40: 539-545
- MEROPS: the database of proteolytic enzymes, their substrates and inhibitors.Nucleic Acids Res. 2014; 42: D503-D509
- Structural classification of zinc fingers: survey and summary.Nucleic Acids Res. 2003; 31: 532-550
- Papain-like protease 1 from transmissible gastroenteritis virus: crystal structure and enzymatic activity toward viral and cellular substrates.J. Virol. 2010; 84: 10063-10073
- Structural basis of ubiquitin recognition by the deubiquitinating protease USP2.Structure. 2006; 14: 1293-1302
- Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21.EMBO Rep. 2011; 12: 350-357
- Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease.Acta Crystallogr. D Biol. Crystallogr. 2014; 70: 572-581
- Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14.EMBO J. 2005; 24: 3747-3756
- Viral OTU deubiquitinases: a structural and functional comparison.PLoS Pathog. 2014; 10: e1003894
- Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells.Proc. Natl. Acad. Sci. U.S.A. 2013; 110: E838-E847
- Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease.PLoS Pathog. 2014; 10: e1004113
- Ubiquitin-binding domains: from structures to functions.Nat. Rev. Mol. Cell Biol. 2009; 10: 659-671
- Regulation of proteolysis by human deubiquitinating enzymes.Biochim. Biophys. Acta. 2014; 1843: 114-128
- The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions.J. Virol. 2010; 84: 7832-7846
- PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production.Cell Res. 2008; 18: 1105-1113
- The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase.J. Gen. Virol. 2013; 94: 1554-1567
- Viral avoidance and exploitation of the ubiquitin system.Nat. Cell Biol. 2009; 11: 527-534
- A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains: role in protein degradation.J. Biol. Chem. 1992; 267: 719-727
- Schrödinger, LLC, New York2010 The PyMOL Molecular Graphics System, version 1.3r1.
Article info
Publication history
Footnotes
The atomic coordinates and structure factors (codes 4REZ, 4RF1, and 4RF0) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy