Introduction
- Tardif N.
- Salles J.
- Landrier J.F.
- Mothe-Satney I.
- Guillet C.
- Boue-Vaysse C.
- Combaret L.
- Giraudet C.
- Patrac V.
- Bertrand-Michel J.
- Migné C.
- Chardigny J.M.
- Boirie Y.
- Walrand S.
EXPERIMENTAL PROCEDURES
Reagents
SIRT1 Phosphorylation, PGC1α Acetylation, and Western Blot Analysis
Quantitative Real Time PCR and Primer Sequences
Cell Culture and Adenoviral Infections
Rates of Fatty Acid Oxidation
Measurement of NAD+ Levels
Measurement of cAMP Levels
Sirt1 Enzymatic Activity
PKA Activity Measurement through Fluorescent Resonance Energy Transfer (FRET) Assay
Animal Studies
Statistics
RESULTS
Oleic Acid Induces PGC1α Deacetylation in a SIRT1-dependent Manner in Skeletal Muscle Cells
Gonçalves de Albuquerque, C. F., Burth, P., Younes Ibrahim, M., Garcia, D. G., Bozza, P. T., Castro Faria Neto, H. C., Castro Faria, M. V. (2012) Reduced plasma nonesterified fatty acid levels and the advent of an acute lung injury in mice after intravenous or enteral oleic acid administration. Mediators Inflamm. 601032

Oleic Acid Increases Intracellular Levels of cAMP and Activates PKA

Oleic Acid Induces SIRT1 Phosphorylation at Ser-434

Oleic Acid Promotes SIRT1 Deacetylase Enzymatic Activity

Oleic Acid Increases the PGC1α Transcriptional Activity of Genes Linked to Fatty Acid Oxidation in Vitro and in Vivo

Oleic Acid Increases Fatty Acid Oxidation Genes in a SIRT1- and PGC1α-dependent Manner

Oleic Acid Increases Rates of Fatty Acid Oxidation in a SIRT1-dependent Manner

DISCUSSION
- Boström P.
- Wu J.
- Jedrychowski M.P.
- Korde A.
- Ye L.
- Lo J.C.
- Rasbach K.A.
- Boström E.A.
- Choi J.H.
- Long J.Z.
- Kajimura S.
- Zingaretti M.C.
- Vind B.F.
- Tu H.
- Cinti S.
- H⊘jlund K.
- Gygi S.P.
- Spiegelman B.M.
- Baur J.A.
- Pearson K.J.
- Price N.L.
- Jamieson H.A.
- Lerin C.
- Kalra A.
- Prabhu V.V.
- Allard J.S.
- Lopez-Lluch G.
- Lewis K.
- Pistell P.J.
- Poosala S.
- Becker K.G.
- Boss O.
- Gwinn D.
- Wang M.
- Ramaswamy S.
- Fishbein K.W.
- Spencer R.G.
- Lakatta E.G.
- Le Couteur D.
- Shaw R.J.
- Navas P.
- Puigserver P.
- Ingram D.K.
- de Cabo R.
- Sinclair D.A.
- Tardif N.
- Salles J.
- Landrier J.F.
- Mothe-Satney I.
- Guillet C.
- Boue-Vaysse C.
- Combaret L.
- Giraudet C.
- Patrac V.
- Bertrand-Michel J.
- Migné C.
- Chardigny J.M.
- Boirie Y.
- Walrand S.
Acknowledgments
REFERENCES
- Molecular basis for membrane phospholipid diversity: why are there so many lipids?.Annu. Rev. Biochem. 1997; 66: 199-232
- Coordination of lipid metabolism in membrane biogenesis.Annu. Rev. Cell Dev. Biol. 2009; 25: 539-566
- Lipid droplets and cellular lipid metabolism.Annu. Rev. Biochem. 2012; 81: 687-714
- The role of the lipogenic pathway in the development of hepatic steatosis.Diabetes Metab. 2008; 34: 643-648
- Metabolic regulation of peroxisomal and mitochondrial fatty acid oxidation.Adv. Exp. Med. Biol. 2003; 544: 307-314
- Fuel metabolism in starvation.Annu. Rev. Nutr. 2006; 26: 1-22
- GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects.Cell. 2010; 142: 687-698
- Oleate-enriched diet improves insulin sensitivity and restores muscle protein synthesis in old rats.Clin. Nutr. 2011; 30: 799-806
- Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells.J. Biol. Chem. 2008; 283: 11107-11116
- Dietary interventions for metabolic syndrome: role of modifying dietary fats.Curr. Diab. Rep. 2009; 9: 43-50
- Regulation of fatty acid oxidation in skeletal muscle.Annu. Rev. Nutr. 1999; 19: 463-484
- Regulatory enzymes of mitochondrial beta-oxidation as targets for treatment of the metabolic syndrome.Obes Rev. 2010; 11: 380-388
- Malonyl-CoA: the regulator of fatty acid synthesis and oxidation.J. Clin. Invest. 2012; 122: 1958-1959
- The orphan nuclear receptor estrogen-related receptor α is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene.Mol. Cell. Biol. 1997; 17: 5400-5409
- PPARα: energy combustion, hypolipidemia, inflammation and cancer.Nucl. Recept. Signal. 2010; 8: e002
- AMPK and PPARδ agonists are exercise mimetics.Cell. 2008; 134: 405-415
- Peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1 α): transcriptional coactivator and metabolic regulator.Endocr. Rev. 2003; 24: 78-90
- Transcriptional regulatory circuits controlling mitochondrial biogenesis and function.Genes Dev. 2004; 18: 357-368
- Transcriptional control of mitochondrial biogenesis and function.Annu. Rev. Physiol. 2009; 71: 177-203
- Transcriptional integration of mitochondrial biogenesis.Trends Endocrinol. Metab. 2012; 23: 459-466
- Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1.Nature. 2005; 434: 113-118
- GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α.Cell Metab. 2006; 3: 429-438
- Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α.EMBO J. 2007; 26: 1913-1923
- Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state.Mol. Cell. 2003; 12: 51-62
- AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.Nature. 2009; 458: 1056-1060
- The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+).Mol. Cell. 2011; 44: 851-863
- Equilibrium between adenylyl cyclase and phosphodiesterase patterns adrenergic agonist dose-dependent spatiotemporal cAMP/protein kinase A activities in cardiomyocytes.Mol. Pharmacol. 2010; 78: 340-349
Gonçalves de Albuquerque, C. F., Burth, P., Younes Ibrahim, M., Garcia, D. G., Bozza, P. T., Castro Faria Neto, H. C., Castro Faria, M. V. (2012) Reduced plasma nonesterified fatty acid levels and the advent of an acute lung injury in mice after intravenous or enteral oleic acid administration. Mediators Inflamm. 601032
- Total fat intake modifies plasma fatty acid composition in humans.J. Nutr. 2001; 131: 231-234
- Effect of 6 dietary fatty acids on the postprandial lipid profile, plasma fatty acids, lipoprotein lipase, and cholesterol ester transfer activities in healthy young men.Am. J. Clin. Nutr. 2001; 73: 198-208
- Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters.Biochem. Biophys. Res. Commun. 2006; 348: 716-721
- Nutrient-dependent acetylation controls basic regulatory metabolic switches and cellular reprogramming.Cold Spring Harb. Symp. Quant. Biol. 2011; 76: 203-209
- Free fatty acids increase PGC-1α expression in isolated rat islets.FEBS Lett. 2005; 579: 1446-1452
- Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging.Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 20405-20410
- A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis.Nature. 2012; 481: 463-468
- Metabolic control through the PGC-1 family of transcription coactivators.Cell Metab. 2005; 1: 361-370
- SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α.J. Biol. Chem. 2005; 280: 16456-16460
- PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure.Curr. Opin. Lipidol. 2009; 20: 98-105
- Resveratrol improves health and survival of mice on a high-calorie diet.Nature. 2006; 444: 337-342
- Oleate protects against palmitate-induced insulin resistance in L6 myotubes.Br. J. Nutr. 2009; 102: 1557-1563
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy