Advertisement

The Imprinted Gene PEG3 Inhibits Wnt Signaling and Regulates Glioma Growth*

  • Xiuli Jiang
    Affiliations
    Department of Neurosurgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115
    Search for articles by this author
  • Yi Yu
    Affiliations
    Department of Neurosurgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115
    Search for articles by this author
  • Hong Wei Yang
    Affiliations
    Department of Neurosurgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115
    Search for articles by this author
  • Nathalie Y.R. Agar
    Affiliations
    Department of Neurosurgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115
    Search for articles by this author
  • Laura Frado
    Affiliations
    Department of Neurosurgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115
    Search for articles by this author
  • Mark D. Johnson
    Correspondence
    To whom correspondence should be addressed: Dept. of Neurosurgery, Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115. Tel.: 617-732-6952;
    Affiliations
    Department of Neurosurgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115
    Search for articles by this author
  • Author Footnotes
    * This work was supported, in whole or in part, by National Institutes of Health Grant K08 NS43482 and National Institutes of Health Director's New Innovator Award 1DP2OD002319-01 (to M. D. J.). This work was also supported by an American Brain Tumor Association fellowship (to X. J.), a Sontag Distinguished Scientist award, and a Hagerty Fund research award (to M. D. J.).
Open AccessPublished:January 11, 2010DOI:https://doi.org/10.1074/jbc.M109.069450
      The imprinted gene PEG3 confers parenting and sexual behaviors, alters growth and development, and regulates apoptosis. However, a molecular mechanism that can account for the diverse functions of Peg3/Pw1 is not known. To elucidate Peg3-regulated pathways, we performed a functional screen in zebrafish. Enforced overexpression of PEG3 mRNA during zebrafish embryogenesis decreased β-catenin protein expression and inhibited Wnt-dependent tail development. Peg3/Pw1 also inhibited Wnt signaling in human cells by binding to β-catenin and promoting its degradation via a p53/Siah1-dependent, GSK3β-independent proteasomal pathway. The inhibition of the Wnt pathway by Peg3/Pw1 suggested a role in tumor suppression. Hypermethylation of the PEG3 promoter in primary human gliomas led to a loss of imprinting and decreased PEG3 mRNA expression that correlated with tumor grade. The decrease in Peg3/Pw1 protein expression increased β-catenin, promoted proliferation, and inhibited p53-dependent apoptosis in human CD133+ glioma stem cells. Thus, mammalian imprinting utilizes Peg3/Pw1 to co-opt the Wnt pathway, thereby regulating development and glioma growth.

      Introduction

      Mammalian imprinting regulates growth and the establishment of parental nurturing behaviors, but the detailed molecular mechanisms by which this occurs are incompletely known. PEG3 (paternally expressed gene 3) is an imprinted gene that is expressed primarily during embryogenesis and in adult ovary, testis, muscle, and brain (
      • Relaix F.
      • Weng X.
      • Marazzi G.
      • Yang E.
      • Copeland N.
      • Jenkins N.
      • Spence S.E.
      • Sassoon D.
      ,
      • Kim J.
      • Ashworth L.
      • Branscomb E.
      • Stubbs L.
      ,
      • Li L.
      • Keverne E.B.
      • Aparicio S.A.
      • Ishino F.
      • Barton S.C.
      • Surani M.A.
      ,
      • Yamaguchi A.
      • Taniguchi M.
      • Hori O.
      • Ogawa S.
      • Tojo N.
      • Matsuoka N.
      • Miyake S.
      • Kasai K.
      • Sugimoto H.
      • Tamatani M.
      • Yamashita T.
      • Tohyama M.
      ). Homozygous deletion of PEG3 in mice leads to growth retardation, impaired maternal nurturing and male sexual behavior, complex olfactory deficits, increased body fat, abnormal metabolism, and a decreased number of oxytocin neurons in the hypothalamus (
      • Li L.
      • Keverne E.B.
      • Aparicio S.A.
      • Ishino F.
      • Barton S.C.
      • Surani M.A.
      ,
      • Curley J.P.
      • Pinnock S.B.
      • Dickson S.L.
      • Thresher R.
      • Miyoshi N.
      • Surani M.A.
      • Keverne E.B.
      ,
      • Swaney W.T.
      • Curley J.P.
      • Champagne F.A.
      • Keverne E.B.
      ,
      • Swaney W.T.
      • Curley J.P.
      • Champagne F.A.
      • Keverne E.B.
      ). Despite numerous studies, however, the mechanism by which Peg3/Pw1 accomplishes this diversity of tasks is incompletely known. Peg3/Pw1 binds TRAF2 to activate NFκB, although it is not essential for this process (
      • Relaix F.
      • Wei X.J.
      • Wu X.
      • Sassoon D.A.
      ,
      • Ledgerwood E.C.
      • O'Rahilly S.
      • Surani M.A.
      ). Peg3/Pw1 also regulates myogenesis via p53-, tumor necrosis factor-α-, and Bax-dependent pathways, but the detailed mechanisms of Peg3/Pw1 actions during muscle development are poorly understood (
      • Coletti D.
      • Yang E.
      • Marazzi G.
      • Sassoon D.
      ,
      • Nicolas N.
      • Marazzi G.
      • Kelley K.
      • Sassoon D.
      ,
      • Schwarzkopf M.
      • Coletti D.
      • Sassoon D.
      • Marazzi G.
      ). In addition, Peg3/Pw1 binds Siah1 to promote Bax translocation during p53-dependent apoptosis (
      • Relaix F.
      • Wei X.
      • Li W.
      • Pan J.
      • Lin Y.
      • Bowtell D.D.
      • Sassoon D.A.
      • Wu X.
      ,
      • Deng Y.
      • Wu X.
      ,
      • Johnson M.D.
      • Wu X.
      • Aithmitti N.
      • Morrison R.S.
      ), but again, the molecular mechanism by which Peg3/Pw1 cooperates with Siah1 to promote Bax translocation is not known.
      Aberrant methylation of imprinted genes (e.g. IGF2 and CDKN1C) has been implicated in tumorigenesis (
      • Okamoto K.
      • Morison I.M.
      • Taniguchi T.
      • Reeve A.E.
      ,
      • Pantoja C.
      • de Los Ríos L.
      • Matheu A.
      • Antequera F.
      • Serrano M.
      ). PEG3 mRNA expression is decreased in established cancer cell lines due to promoter hypermethylation (
      • Maegawa S.
      • Yoshioka H.
      • Itaba N.
      • Kubota N.
      • Nishihara S.
      • Shirayoshi Y.
      • Nanba E.
      • Oshimura M.
      ,
      • Dowdy S.C.
      • Gostout B.S.
      • Shridhar V.
      • Wu X.
      • Smith D.I.
      • Podratz K.C.
      • Jiang S.W.
      ). Overexpression of Peg3/Pw1 protein in a cultured glioma cell line decreased tumorigenicity (
      • Kohda T.
      • Asai A.
      • Kuroiwa Y.
      • Kobayashi S.
      • Aisaka K.
      • Nagashima G.
      • Yoshida M.C.
      • Kondo Y.
      • Kagiyama N.
      • Kirino T.
      • Kaneko-Ishino T.
      • Ishino F.
      ), but the mechanism underlying this effect was not determined. Moreover, direct evidence for a role for Peg3/Pw1 in primary human cancers is lacking.
      We sought to elucidate the molecular mechanism by which imprinting of PEG3 establishes nurturing behavior, promotes p53-dependent cell death, and regulates tumor growth. Here, we show that Peg3/Pw1 binds β-catenin to inhibit Wnt signaling, thereby regulating development, proliferation, apoptosis, and glioma growth.

      Acknowledgments

      We greatly appreciate Dr. W. Xia for assistance with the zebrafish studies.

      REFERENCES

        • Relaix F.
        • Weng X.
        • Marazzi G.
        • Yang E.
        • Copeland N.
        • Jenkins N.
        • Spence S.E.
        • Sassoon D.
        Dev. Biol. 1996; 177: 383-396
        • Kim J.
        • Ashworth L.
        • Branscomb E.
        • Stubbs L.
        Genome Res. 1997; 7: 532-540
        • Li L.
        • Keverne E.B.
        • Aparicio S.A.
        • Ishino F.
        • Barton S.C.
        • Surani M.A.
        Science. 1999; 284: 330-333
        • Yamaguchi A.
        • Taniguchi M.
        • Hori O.
        • Ogawa S.
        • Tojo N.
        • Matsuoka N.
        • Miyake S.
        • Kasai K.
        • Sugimoto H.
        • Tamatani M.
        • Yamashita T.
        • Tohyama M.
        J. Biol. Chem. 2002; 277: 623-629
        • Curley J.P.
        • Pinnock S.B.
        • Dickson S.L.
        • Thresher R.
        • Miyoshi N.
        • Surani M.A.
        • Keverne E.B.
        FASEB J. 2005; 19: 1302-1304
        • Swaney W.T.
        • Curley J.P.
        • Champagne F.A.
        • Keverne E.B.
        Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 6084-6089
        • Swaney W.T.
        • Curley J.P.
        • Champagne F.A.
        • Keverne E.B.
        Behav. Neurosci. 2008; 122: 963-973
        • Relaix F.
        • Wei X.J.
        • Wu X.
        • Sassoon D.A.
        Nat. Genet. 1998; 18: 287-291
        • Ledgerwood E.C.
        • O'Rahilly S.
        • Surani M.A.
        Lab. Invest. 2000; 80: 1509-1511
        • Coletti D.
        • Yang E.
        • Marazzi G.
        • Sassoon D.
        EMBO J. 2002; 21: 631-642
        • Nicolas N.
        • Marazzi G.
        • Kelley K.
        • Sassoon D.
        Dev. Biol. 2005; 281: 171-183
        • Schwarzkopf M.
        • Coletti D.
        • Sassoon D.
        • Marazzi G.
        Genes Dev. 2006; 20: 3440-3452
        • Relaix F.
        • Wei X.
        • Li W.
        • Pan J.
        • Lin Y.
        • Bowtell D.D.
        • Sassoon D.A.
        • Wu X.
        Proc. Natl. Acad. Sci. U.S.A. 2000; 97: 2105-2110
        • Deng Y.
        • Wu X.
        Proc. Natl. Acad. Sci. U.S.A. 2000; 97: 12050-12055
        • Johnson M.D.
        • Wu X.
        • Aithmitti N.
        • Morrison R.S.
        J. Biol. Chem. 2002; 277: 23000-23007
        • Okamoto K.
        • Morison I.M.
        • Taniguchi T.
        • Reeve A.E.
        Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 5367-5371
        • Pantoja C.
        • de Los Ríos L.
        • Matheu A.
        • Antequera F.
        • Serrano M.
        Cancer Res. 2005; 65: 26-33
        • Maegawa S.
        • Yoshioka H.
        • Itaba N.
        • Kubota N.
        • Nishihara S.
        • Shirayoshi Y.
        • Nanba E.
        • Oshimura M.
        Mol. Carcinog. 2001; 31: 1-9
        • Dowdy S.C.
        • Gostout B.S.
        • Shridhar V.
        • Wu X.
        • Smith D.I.
        • Podratz K.C.
        • Jiang S.W.
        Gynecol. Oncol. 2005; 99: 126-134
        • Kohda T.
        • Asai A.
        • Kuroiwa Y.
        • Kobayashi S.
        • Aisaka K.
        • Nagashima G.
        • Yoshida M.C.
        • Kondo Y.
        • Kagiyama N.
        • Kirino T.
        • Kaneko-Ishino T.
        • Ishino F.
        Genes Cells. 2001; 6: 237-247
        • Yu Y.
        • Jiang X.
        • Schoch B.S.
        • Carroll R.S.
        • Black P.M.
        • Johnson M.D.
        Cancer Res. 2007; 67: 130-138
        • Santelli E.
        • Leone M.
        • Li C.
        • Fukushima T.
        • Preece N.E.
        • Olson A.J.
        • Ely K.R.
        • Reed J.C.
        • Pellecchia M.
        • Liddington R.C.
        • Matsuzawa S.
        J. Biol. Chem. 2005; 280: 34278-34287
        • Sadot E.
        • Conacci-Sorrell M.
        • Zhurinsky J.
        • Shnizer D.
        • Lando Z.
        • Zharhary D.
        • Kam Z.
        • Ben-Ze'ev A.
        • Geiger B.
        J. Cell Sci. 2002; 115: 2771-2780
        • Wang Z.
        • Vogelstein B.
        • Kinzler K.W.
        Cancer Res. 2003; 63: 5234-5235
        • Thorpe C.J.
        • Weidinger G.
        • Moon R.T.
        Development. 2005; 132: 1763-1772
        • Kim J.
        • Bergmann A.
        • Stubbs L.
        Genomics. 2000; 64: 114-118
        • Edelstein L.C.
        • Collins T.
        Gene. 2005; 359: 1-17
        • Matsuzawa S.I.
        • Reed J.C.
        Mol. Cell. 2001; 7: 915-926
        • Liu J.
        • Stevens J.
        • Rote C.A.
        • Yost H.J.
        • Hu Y.
        • Neufeld K.L.
        • White R.L.
        • Matsunami N.
        Mol. Cell. 2001; 7: 927-936
        • Moon R.T.
        • Kohn A.D.
        • De Ferrari G.V.
        • Kaykas A.
        Nat. Rev. Genet. 2004; 5: 691-701
        • Singh S.K.
        • Hawkins C.
        • Clarke I.D.
        • Squire J.A.
        • Bayani J.
        • Hide T.
        • Henkelman R.M.
        • Cusimano M.D.
        • Dirks P.B.
        Nature. 2004; 432: 396-401
        • Borello U.
        • Berarducci B.
        • Murphy P.
        • Bajard L.
        • Buffa V.
        • Piccolo S.
        • Buckingham M.
        • Cossu G.
        Development. 2006; 133: 3723-3732
        • Kapsimali M.
        • Caneparo L.
        • Houart C.
        • Wilson S.W.
        Development. 2004; 131: 5923-5933
        • Huang M.
        • Wang Y.
        • Sun D.
        • Zhu H.
        • Yin Y.
        • Zhang W.
        • Yang S.
        • Quan L.
        • Bai J.
        • Wang S.
        • Chen Q.
        • Li S.
        • Xu N.
        BMC Cancer. 2006; 6: 221
        • Zhang Z.
        • Hartmann H.
        • Do V.M.
        • Abramowski D.
        • Sturchler-Pierrat C.
        • Staufenbiel M.
        • Sommer B.
        • van de Wetering M.
        • Clevers H.
        • Saftig P.
        • De Strooper B.
        • He X.
        • Yankner B.A.
        Nature. 1998; 395: 698-702
        • Johnson M.D.
        • Yu L.R.
        • Conrads T.P.
        • Kinoshita Y.
        • Uo T.
        • Matthews J.D.
        • Lee S.W.
        • Smith R.D.
        • Veenstra T.D.
        • Morrison R.S.
        J. Biol. Chem. 2004; 279: 26685-26697
        • Li H.L.
        • Wang H.H.
        • Liu S.J.
        • Deng Y.Q.
        • Zhang Y.J.
        • Tian Q.
        • Wang X.C.
        • Chen X.Q.
        • Yang Y.
        • Zhang J.Y.
        • Wang Q.
        • Xu H.
        • Liao F.F.
        • Wang J.Z.
        Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 3591-3596