Advertisement

Activation of the Protein Kinase Akt/PKB by the Formation of E-cadherin-mediated Cell-Cell Junctions

EVIDENCE FOR THE ASSOCIATION OF PHOSPHATIDYLINOSITOL 3-KINASE WITH THE E-CADHERIN ADHESION COMPLEX*
  • Salvatore Pece
    Affiliations
    From the Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4330
    Search for articles by this author
  • Mario Chiariello
    Affiliations
    From the Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4330
    Search for articles by this author
  • Cristina Murga
    Affiliations
    From the Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4330
    Search for articles by this author
  • J. Silvio Gutkind
    Correspondence
    To whom correspondence should be addressed: Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, 9000 Rockville Pike, Bldg. 30, Rm. 211, Bethesda, MD 20892-4330. Tel.: 301-496-6259; Fax: 301-402-0823;
    Affiliations
    From the Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4330
    Search for articles by this author
  • Author Footnotes
    * The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Open AccessPublished:July 02, 1999DOI:https://doi.org/10.1074/jbc.274.27.19347
      E-cadherins are surface adhesion molecules localized at the level of adherens junctions, which play a major role in cell adhesiveness by mediating calcium-dependent homophylic interactions at sites of cell-cell contacts. Recently, E-cadherins have been also implicated in a number of biological processes, including cell growth and differentiation, cell recognition, and sorting during developmental morphogenesis, as well as in aggregation-dependent cell survival. As phosphatidylinositol (PI) 3-kinase and Akt play a critical role in survival pathways in response to both growth factors and extracellular stimuli, these observations prompted us to explore whether E-cadherins could affect intracellular molecules regulating the activity of the PI 3-kinase/Akt signaling cascade. Using Madin-Darby canine kidney cells as a model system, we show here that engagement of E-cadherins in homophylic calcium-dependent cell-cell interactions results in a rapid PI 3-kinase-dependent activation of Akt and the subsequent translocation of Akt to the nucleus. Moreover, we demonstrate that the activation of PI 3-kinase in response to cell-cell contact formation involves the phosphorylation of PI 3-kinase in tyrosine residues, and the concomitant recruitment of PI 3-kinase to E-cadherin-containing protein complexes. These findings indicate that E-cadherins can initiate outside-in signal transducing pathways that regulate the activity of PI 3-kinase and Akt, thus providing a novel molecular mechanism whereby the interaction among neighboring cells and their adhesion status may ultimately control the fate of epithelial cells.
      MDCK
      Madin-Darby canine kidney
      PI 3-kinase
      phosphatidylinositol 3-kinase
      Tyr(P)
      phosphotyrosine
      PI3P
      phosphatidylinositol 3-phosphate
      PBS
      phosphate-buffered saline
      HA
      hemagglutinin
      The maintenance of structural and functional integrity of epithelia requires highly dynamic cell-to-cell and cell-to-matrix interactions, which are mediated by adhesion mechanisms involving different types of cell-surface receptors. Among them, cadherins and integrins play a major role, as they are able to recognize and interact with other cell adhesion receptors on neighboring cells or with proteins of the extracellular matrix, respectively (
      • Takeichi M.
      , ,
      • Kemler R.
      ). E-cadherins belong to the family of integral membrane glycoproteins promoting homophylic calcium-dependent cell-cell interactions and are well characterized adhesion receptors found within adherens-type junctions in epithelia. The extracellular domain of E-cadherins is able to mediate per se calcium-dependent homotypic interactions at sites of cell-cell contacts, while its highly conserved intracytoplasmic tail is involved in the strengthening of the homophylic adhesions by binding a set of related proteins called catenins which, in turn, link the complex to the actin cytoskeleton and elicit certain nuclear responses (
      • Ozawa M.
      • Kemler R.
      ,
      • Aberle H.
      • Schwartz H.
      • Kemler R.
      ). Recently, the dynamic aspects of cell adhesion and its relationship to physiological and pathophysiological events have been intensively investigated. They include cell growth and differentiation, cell recognition and sorting during developmental morphogenesis (reviewed in Ref. ), and a role in certain pathological processes, including the correlation between loss of E-cadherins at the level of cell surface and enhanced cell invasiveness in vitro (
      • Birchmeier W.
      • Behrens J.
      ,
      • Simard D.
      • Nabi I.R.
      ,
      • Vermeulen S.J.
      • Bruyneel E.A.
      • Bracke M.E.
      • De Bruyne G.K.
      • Vennekens K.M.
      • Vleminckx K.L.
      • Berx G.J.
      • van Roy F.M.
      • Mareel M.M.
      ,
      • Behrens J.
      • Vakaet L.
      • Friis R.
      • Winterhager E.
      • Van Roy F.
      • Mareel M.M.
      • Birchmeier W.
      ) and tumor progression in vivo (
      • Perl A.K.
      • Wilgenbus P.
      • Dahl U.
      • Semb H.
      • Christofori G.
      ,
      • Toyoyama H.
      • Nuruki K.
      • Ogawa H.
      • Yanagi M.
      • Matsumoto H.
      • Nishijima H.
      • Shimotakahara T.
      • Aikou T.
      • Ozawa M.
      ).
      Several lines of evidence indicate that the E-cadherin-mediated adhesion system is subject to regulation from the cytoplasmic side in response to intracellular events (
      • Behrens J.
      • Vakaet L.
      • Friis R.
      • Winterhager E.
      • Van Roy F.
      • Mareel M.M.
      • Birchmeier W.
      ,
      • Zhong C.
      • Kinch M.S.
      • Burridge K.
      ,
      • Kinch M.S.
      • Clark G.J.
      • Der C.J.
      • Burridge K.
      ,
      • Matsuyoshi N.
      • Hamaguchi M.
      • Taniguchi S.
      • Nagafuchi A.
      • Tsukita S.
      • Takeichi M.
      ,
      • Jou T.S.
      • Nelson W.J.
      ). In contrast, the generation of signals at the level of adherens junctions as a consequence of E-cadherin engagement has been thus far poorly investigated, although newly available evidence suggest that E-cadherins may participate in transducing outside-in signals (
      • Bullions L.C.
      • Levine A.J.
      ). Of interest, it has been reported recently that E-cadherins can mediate aggregation-dependent cell survival in a variety of experimental settings (
      • Kantak S.S.
      • Kramer R.H.
      ,
      • Miller J.R.
      • Moon R.T.
      ,
      • Day M.L.
      • Zhao X.
      • Vallorosi C.J.
      • Putzi M.
      • Powell C.T.
      • Lin C.
      • Day K.C.
      ). As the Akt kinase is an integral component of survival pathways utilized by both growth factors and extracellular stimuli (
      • Marte B.M.
      • Downward J.
      ,
      • Kulik G.
      • Klippel A.
      • Weber M.J.
      ,
      • Murga C.
      • Laguinge L.
      • Wetzker R.
      • Cuadrado A.
      • Gutkind J.S.
      ,
      • Downward J.
      ), these observations prompted us to investigate whether E-cadherins could affect the activity of signaling molecules controlling Akt function. In this study, we used an in vitro model for the disruption and subsequent re-formation of E-cadherin-dependent interactions in epithelial MDCK1 cells to explore the possibility that E-cadherin-mediated cellular aggregation could result in Akt activation. We provide evidence that engagement of E-cadherins in homophylic adhesion with neighboring cells promotes a remarkable PI 3-kinase-dependent increase in the state of activation of Akt and the rapid translocation of Akt to the nucleus. We also demonstrate that engagement of E-cadherins is necessary and sufficient for the induction of Akt activity upon adherens junction assembly, and co-immunoprecipitation experiments demonstrate a physical association between PI 3-kinase and E-cadherin-containing multiprotein complexes in response to cell-cell contact formation, thus providing a likely mechanism for Akt activation. Overall, these findings indicate that E-cadherins may initiate outside-in signal transducing pathways, thus supporting an active role for E-cadherins in the control of key early post-aggregation events.

      REFERENCES

        • Takeichi M.
        Science. 1991; 251: 1451-1455
        • Gumbiner B.M.
        Cell. 1996; 84: 345-357
        • Kemler R.
        Trends Genet. 1993; 9: 317-321
        • Ozawa M.
        • Kemler R.
        J. Cell Biol. 1992; 116: 989-996
        • Aberle H.
        • Schwartz H.
        • Kemler R.
        J. Cell. Biochem. 1996; 61: 514-523
        • Birchmeier W.
        • Behrens J.
        Biochim. Biophys. Acta. 1994; 1198: 11-26
        • Simard D.
        • Nabi I.R.
        Biochem. Biophys. Res. Commun. 1996; 219: 122-127
        • Vermeulen S.J.
        • Bruyneel E.A.
        • Bracke M.E.
        • De Bruyne G.K.
        • Vennekens K.M.
        • Vleminckx K.L.
        • Berx G.J.
        • van Roy F.M.
        • Mareel M.M.
        Cancer Res. 1995; 55: 4722-4728
        • Behrens J.
        • Vakaet L.
        • Friis R.
        • Winterhager E.
        • Van Roy F.
        • Mareel M.M.
        • Birchmeier W.
        J. Cell Biol. 1993; 120: 757-766
        • Perl A.K.
        • Wilgenbus P.
        • Dahl U.
        • Semb H.
        • Christofori G.
        Nature. 1998; 392: 190-193
        • Toyoyama H.
        • Nuruki K.
        • Ogawa H.
        • Yanagi M.
        • Matsumoto H.
        • Nishijima H.
        • Shimotakahara T.
        • Aikou T.
        • Ozawa M.
        Oncol. Rep. 1999; 6: 81-85
        • Zhong C.
        • Kinch M.S.
        • Burridge K.
        Mol. Biol. Cell. 1997; 8: 2329-2344
        • Kinch M.S.
        • Clark G.J.
        • Der C.J.
        • Burridge K.
        J. Cell Biol. 1995; 130: 461-471
        • Matsuyoshi N.
        • Hamaguchi M.
        • Taniguchi S.
        • Nagafuchi A.
        • Tsukita S.
        • Takeichi M.
        J. Cell Biol. 1992; 118: 703-714
        • Jou T.S.
        • Nelson W.J.
        J. Cell Biol. 1998; 142: 85-100
        • Bullions L.C.
        • Levine A.J.
        Curr. Opin. Oncol. 1998; 10: 81-87
        • Kantak S.S.
        • Kramer R.H.
        J. Biol. Chem. 1998; 273: 16953-16961
        • Miller J.R.
        • Moon R.T.
        Genes Dev. 1996; 10: 2527-2539
        • Day M.L.
        • Zhao X.
        • Vallorosi C.J.
        • Putzi M.
        • Powell C.T.
        • Lin C.
        • Day K.C.
        J. Biol. Chem. 1999; 274: 9656-9664
        • Marte B.M.
        • Downward J.
        Trends Biochem. Sci. 1997; 22: 355-358
        • Kulik G.
        • Klippel A.
        • Weber M.J.
        Mol. Cell. Biol. 1997; 17: 1595-1606
        • Murga C.
        • Laguinge L.
        • Wetzker R.
        • Cuadrado A.
        • Gutkind J.S.
        J. Biol. Chem. 1998; 273: 19080-19085
        • Downward J.
        Curr. Opin. Cell Biol. 1998; 10: 262-267
        • Volberg T.
        • Geiger B.
        • Kartenbeck J.
        • Franke W.W.
        J. Cell Biol. 1986; 102: 1832-1842
        • Gutkind J.S.
        • Lacal P.M.
        • Robbins K.C.
        Mol. Cell. Biol. 1990; 10: 3806-3809
        • Lampugnani M.G.
        • Corada M.
        • Caveda L.
        • Breviario F.
        • Ayalon O.
        • Geiger B.
        • Dejana E.
        J. Cell Biol. 1995; 129: 203-217
        • Kinch M.S.
        • Petch L.
        • Zhong C.
        • Burridge K.
        Cell Adhes. Commun. 1997; 4: 425-437
        • Andjelkovic M.
        • Alessi D.R.
        • Meier R.
        • Fernandez A.
        • Lamb N.J.
        • Frech M.
        • Cron P.
        • Cohen P.
        • Lucocq J.M.
        • Hemmings B.A.
        J. Biol. Chem. 1997; 272: 31515-31524
        • Du K.
        • Montminy M.
        J. Biol. Chem. 1998; 273: 32377-32379
        • Vestweber D.
        • Kemler R.
        EMBO J. 1985; 4: 3393-3398
        • Ozawa M.
        • Kemler R.
        J. Cell Biol. 1998; 142: 1605-1613
        • Brieher W.M.
        • Yap A.S.
        • Gumbiner B.M.
        J. Cell Biol. 1996; 135: 487-496
        • Wymann M.P.
        • Pirola L.
        Biochim. Biophys. Acta. 1998; 1436: 127-150