This paper is only available as a PDF. To read, Please Download here.
A chemically charged amber suppressor tRNA was used to introduce the photoactivatable amino acid (Tmd)Phe at a selected position within the signal sequence of the secretory protein preprolactin. This allowed the interactions of the NH2-terminal, the central, and the COOH-terminal regions of the signal sequence to be investigated during insertion into the membrane of the endoplasmic reticulum (ER). We found that different regions of the nascent chains were photocross-linked to different ER proteins. The TRAM protein (translocating chain-associating membrane protein) contacts the NH2-terminal region of the signal sequence while the mammalian Sec61p contacts the hydrophobic core of the signal sequence and regions COOH-terminal of this. These results suggest that the ER translocation complex is composed of heterologous protein subunits which contact distinct regions of nascent polypeptides during their membrane insertion.
REFERENCES
- J. Am. Chem. Soc. 1989; 111: 8013-8014
- Biochemistry. 1991; 30: 5411-5421
- J. Org. Chem. 1991; 56: 4615-4625
- Nature. 1992; 356: 537-539
- Biochemistry. 1988; 27: 7951-7959
- Biochemistry. 1982; 21: 855-861
- J. Biol. Chem. 1980; 255: 3313-3318
- Science. 1993; 259: 806-809
- J. Cell Biol. 1987; 105: 633-645
- J. Cell Biol. 1989; 109: 2653-2664
- Methods Enzymol. 1991; 202: 301-336
- J. Am. Chem. Soc. 1992; 114: 7959-7961
- Science. 1992; 255: 197-200
- J. Cell Biol. 1982; 93: 97-102
- Nature. 1992; 357: 47-52
- Cell. 1992; 71: 489-503
- J. Cell Biol. 1992; 116: 597-604
- Nucleic Acids Res. 1986; 14: 1427-1448
- Biochemistry. 1984; 23: 1468-1473
- Bioessays. 1992; 14: 535-540
- Neupert W. Lill R. Membrane Biogenesis and Protein Targeting-New Comprehensive Biochemistry. 22. Elsevier Science Publishers B. V., Amsterdam1992: 105-118
- J. Cell Biol. 1991; 113: 35-44
- J. Cell Biol. 1993; 121: 743-750
- J. Cell Biol. 1991; 114: 21-33
- Proc. Natl. Acad. Sci. U. S. A. 1986; 83: 8604-8608
- J. Cell Biol. 1989; 109: 2033-2043
- Nature. 1986; 320: 634-636
- Cell. 1986; 46: 1103-1112
- Science. 1992; 256: 1798-1802
- Cell. 1992; 69: 343-352
- J. Am. Chem. Soc. 1984; 106: 7540-7545
- Science. 1989; 244: 182-188
- Nucleic Acids Res. 1989; 18: 83-88
- Biochemistry. 1987; 26: 3197-3205
- J. Biol. Chem. 1980; 255: 865-869
- Trends Biochem. Sci. 1990; 15: 355-358
- Science. 1992; 258: 931-936
- J. Am. Chem. Soc. 1991; 113: 2722-2729
- Biochemistry. 1989; 28: 5185-5195
- J. Cell Biol. 1989; 109: 2641-2652
- J. Cell Biol. 1989; 109: 2665-2675
- Cell. 1992; 69: 353-365
- Cell. 1988; 52: 39-49
- Cell. 1991; 65: 371-380
- Mol. Biol. Cell. 1992; 3: 129-142
- J. Cell Biol. 1991; 112: 809-821
- Biochim. Biophys. Acta. 1988; 947: 307-333
- Nature. 1987; 328: 830-833
- FEBS Lett. 1989; 257: 263-268
Article info
Publication history
Published online: December 15, 1993
Identification
Copyright
© 1993 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
User license
Creative Commons Attribution (CC BY 4.0) | How you can reuse
Elsevier's open access license policy

Creative Commons Attribution (CC BY 4.0)
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy