Advertisement
CHEMISTRY AND METABOLISM OF MACROMOLECULES| Volume 246, ISSUE 7, P2207-2210, April 10, 1971

Download started.

Ok

Further Evidence for a Single Leucyl Transfer Ribonucleic Acid Synthetase Capable of Charging Five Leucine Transfer Ribonucleic Acids in Escherichia coli

Open AccessPublished:April 10, 1971DOI:https://doi.org/10.1016/S0021-9258(19)77209-3
      This paper is only available as a PDF. To read, Please Download here.
      Five components of leucine transfer ribonucleic acid in Escherichia coli separated on a reversed phase column were charged with radioactive leucine. Each labeled leucyl-tRNA was subjected to an exchange reaction with unlabeled E. coli tRNA in which the labeled leucine could be transferred from one leucine tRNA to another. The exchange product, when analyzed on methylated albumin-Kieselguhr columns, suggested that a single leucyl-tRNA synthetase was responsible for the attachment of leucine to all five leucine tRNAs. The existence of a single synthetase specific for all five components of leucine tRNA was further supported by studying the reaction rate of mixed substrates containing two leucine tRNAs under a condition in which the rate was enzyme-dependent.

      REFERENCES

        • Nirenberg M.
        • Caskey T.
        • Marshall R.
        • Brimacombe R.
        • Kellogg D.
        • Doctor B.
        • Hatfield D.
        • Levin J.
        • Rottman F.
        • Pestka S.
        • Wilcox M.
        • Anderson F.
        Cold Spring Harbor Symp. Quant. Biol. 1966; 31: 11
        • Khorana H.G.
        • Büchi H.
        • Ghosh H.
        • Gupta N.
        • Jacob T.M.
        • Kössel H.
        • Morgan R.
        • Narang S.A.
        • Ohtsuka E.
        • Wells R.D.
        Cold Spring Harbor Symp. Quant. Biol. 1966; 31: 39
        • Sueoka N.
        • Yamane T.
        Proc. Nat. Acad. Sci. U. S. A. 1962; 48: 1454
        • Weisblum B.
        • Benzer S.
        • Holley R.W.
        Proc. Nat. Acad. Sci. U. S. A. 1962; 48: 1449
        • Kelmers A.D.
        • Novelli G.D.
        • Stulberg M.P.
        J. Biol. Chem, . 1965; 240: 3979
        • Bennett T.P.
        • Goldstein J.
        • Lipmann F.
        Proc. Nat. Acad. Sci. U. S. A. 1963; 49: 850
        • Bennett T.P.
        • Goldstein J.
        • Lipmann F.
        Cold Spring Harbor Symp. Quant. Biol. 1963; 28: 233
        • Yamane T.
        • Sueoka N.
        Proc. Nat. Acad. Sci. U. S. A. 1963; 50: 1093
        • Lagerkvist U.
        • Waldenström J.
        J. Mol. Biol. 1964; 8: 28
        • Yamane T.
        • Cheng T.Y.
        • Sueoka N.
        Cold Spring Harbor Symp. Quant. Biol. 1963; 28: 569
        • von Ehrenstein G.
        • Dais D.
        Proc. Nat. Acad. Sci. U. S. A. 1963; 50: 81
        • Kan J.
        • Nirenberg M.
        • Sueoka N.
        J. Mol. Biol. 1970; 52: 179
        • Berg P.
        • Lagerkvist U.
        • Dieckmann M.
        J. Mol. Biol. 1962; 5: 159
        • Keller E.B.
        • Anthony R.S.
        Fed. Proc. 1963; 22: 231
        • Yamane T.
        • Sueoka N.
        Proc. Nat. Acad. Sci. U. S. A. 1964; 51: 1178
        • Bennett T.P.
        J. Biol. Chem. 1969; 244: 3182
        • Yu C.T.
        Cold Spring Harbor Symp. Quant. Biol. 1966; 31: 565
        • Kan J.
        • Kano-Sueoka T.
        • Sueoka N.
        J. Biol. Chem, . 1968; 243: 5584
        • Kano-Sueoka T.
        • Sueoka N.
        J. Mol. Biol. 1966; 20: 183
        • Zachau H.G.
        Biochim. Biophys. Acta. 1965; 108: 355
        • Berg P.
        • Bergmann F.H.
        • Ofengand E.J.
        • Dieck-mann M.
        J. Biol. Chem. 1961; 236: 1726
        • Rouget P.
        • Chapeville F.
        Eur. J. Biochem. 1970; 14: 498