Advertisement

Nonenzymatic Glycation of Bovine Serum Albumin by Fructose (Fructation)

Comparison with the Maillard reaction initiated by glucose*
  • G Suárez
    Correspondence
    To whom all correspondence should be addressed.
    Affiliations
    Milton and Miriam Petrie Arthritis Research Laboratory, Department of Orthopedics, Mount Sinai School of Medicine, City University of New York, New York, New York 10029

    Dept. of Biochemistry, New York Medical Collage, Valhalla, NY 10595.
    Search for articles by this author
  • R Rajaram
    Affiliations
    Milton and Miriam Petrie Arthritis Research Laboratory, Department of Orthopedics, Mount Sinai School of Medicine, City University of New York, New York, New York 10029
    Search for articles by this author
  • A L Oronsky
    Affiliations
    Milton and Miriam Petrie Arthritis Research Laboratory, Department of Orthopedics, Mount Sinai School of Medicine, City University of New York, New York, New York 10029
    Search for articles by this author
  • M A Gawinowicz
    Affiliations
    Department of Medicine, Columbia University, New York, New York 10032
    Search for articles by this author
  • Author Footnotes
    * This research was supported in part by the American Diabetes Association, American Heart Association Grant 82946, the Milton and Miriam Petrie Fund, and Lederle Laboratories. This is contribution No. 10 from the Milton and Miriam Petrie Arthritis Research Laboratory. Preliminary accounts of this work were given at the Annual Meeting of the American Society of Biological Chemists, St. Louis, MO, June, 1984 (43) and at the XIII International Congress of Biochemistry, Amsterdam, The Netherlands, August 1985. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
      This paper is only available as a PDF. To read, Please Download here.
      Nonenzymatic glycation by glucose (glucation) was compared with glycation by fructose (fructation). The rate and extent of protein-bound fluorescence generation upon fructation was about 10 times that upon glucation. In contrast, nonenzymatically glucated bovine serum albumin (BSA) released about twice as much formaldehyde upon periodate oxidation as did nonenzymatically fructated BSA. However, the rate of blocking of amino groups was similar in both proteins. Periodate oxidation of borohydride-reduced glycated BSA led to regeneration of amino groups with preservation of fluorescence. From the ratio between the decrease in formaldehyde-releasing ability and the regenerated amino groups, formaldehyde molar yields of 0.47 and 0.8 were computed for fructose- and glucose-derived Amadori groups, respectively. This is consistent with participation of both carbon 1 and carbon 3 in the Amadori rearrangement from fructose. The formaldehyde releasing ability of nonenzymatically fructated BSA attains asymptotic maximum values earlier than that of nonenzymatically glucated BSA. Thus, the higher rate of fluorescence generation in nonenzymatically fructated BSA could be explained by a faster conversion of its Amadori groups. Since fluorescence generation through the Maillard reaction has been correlated with long term complications of diabetes mellitus, the participation of nonenzymatic fructation in this pathological state deserves further exploration. This is especially relevant in tissues where fructose levels increase in diabetes as a result of the operation of the sorbitol pathway.

      REFERENCES

        • Bunn H.F.
        • Gabbay K.H.
        • Gallop P.M.
        Science. 1978; 200: 21-27
        • Brownlee M.
        • Vlassara H.
        • Cerami A.
        Ann. Intern. Med. 1984; 101: 527-537
        • Kennedy L.
        • Baynes J.W.
        Diabetologia. 1984; 26: 93-98
        • Stevens V.J.
        • Rouzer C.A.
        • Monnier V.M.
        • Cerami A.
        Proc. Natl. Acad. Sci. U. S. A. 1978; 75: 2918-2922
        • Chiou S.-H.
        • Chylack Jr., L.T.
        • Tung W.H.
        • Bunn H.F.
        J. Biol. Chem. 1981; 256: 5176-5180
        • Miller J.A.
        • Gravallese E.
        • Bunn H.F.
        J. Clin. Invest. 1980; 65: 896-901
        • Vlassara H.
        • Brownlee M.
        • Cerami A.
        Proc. Natl. Acad. Sci. U. S. A. 1981; 78: 5190-5192
        • Dolhofer R.
        • Wieland O.H.
        FEBS Lett. 1979; 103: 282-286
        • Le Pape A.
        • Muh J.-P.
        • Bailey A.J.
        Biochem. J. 1981; 197: 405-412
        • Perejda A.J.
        • Uitto J.
        Collagen Relat. Res. 1982; 2: 81-90
        • Zaman Z.
        • Verwilghen R.L.
        Biochim. Biophys. Acta. 1981; 669: 120-124
        • Witztum J.L.
        • Steinbrecher U.P.
        • Fisher M.
        • Kesaniemi A.
        Proc. Natl. Acad. Sci. U. S. A. 1983; 80: 2757-2761
        • Urbanowski J.C.
        • Cohenford M.A.
        • Dain J.A.
        J. Biol. Chem. 1982; 257: 111-115
        • McKinney R.A.
        • Urbanowski J.C.
        • Dain J.A.
        Biochem. Int. 1982; 4: 127-133
        • Haney D.N.
        • Bunn H.F.
        Proc. Natl. Acad. Sci. U. S. A. 1976; 73: 3534-3538
        • Acharya A.S.
        • Sussman L.G.
        • Manning J.M.
        J. Biol. Chem. 1983; 258: 2296-2302
        • Monnier V.M.
        • Stevens V.J.
        • Cerami A.
        Srivastava S.K. Red Blood Cell and Lens Metabolism. Elsevier/North-Holland, New York1980: 463-474
        • Bunn H.F.
        • Higgins P.J.
        Science. 1981; 213: 222-224
        • Gabbay K.H.
        Annu. Rev. Med. 1975; 26: 521-536
        • Kinoshita J.H.S.
        • Fukushi S.
        • Kador P.
        • Merola L.O.
        Metabolism. 1979; 28: 462-469
        • Gabbay K.H.
        • Kinoshita J.H.S.
        Isr. J. Med. 1972; 8: 1557-1561
        • Suarez G.
        • Rajaram R.
        • Bhuyan K.
        • Oronsky A.L.
        • Goidl J.A.
        J. Clin. Invest. 1988; 82: 624-627
        • Heyns K.
        • Meinecke K.H.
        Chem. Ber. 1953; 86: 1453-1462
        • Wong W.S.D.
        • Kristjansson M.M.
        • Osuga D.T.
        • Feeney R.E.
        Int. J. Protein Res. 1985; 26: 56-62
        • Habeeb A.F.
        Anal. Biochem. 1966; 14: 328-336
        • Nash T.
        Biochem. J. 1953; 55: 416-421
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        J. Biol. Chem. 1951; 193: 265-275
        • Gallop P.M.
        • Fluckiger R.
        • Hannenken A.
        • Mininsohn M.M.
        • Gabbay K.H.
        Anal. Biochem. 1981; 117: 427-433
        • Peters Jr., T.H.
        Adv. Protein Chem. 1985; 37: 161-245
        • Fluckiger R.
        • Gallop P.M.
        Methods Enzymol. 1984; 106: 77-87
        • Finot P.-A.
        Diabetes. 1982; 31: 22-28
        • Lee T.C.
        • Pinatauro S.J.
        • Chichester C.O.
        Diabetes. 1982; 31: 37-46
        • Olufemi S.
        • Talwar D.
        • Robb D.A.
        Clin. Chim. Acta. 1987; 163: 125-136
        • Goldfarb A.R.
        Biochemistry. 1966; 5: 2570-2578
        • Bobbitt J.M.
        Adv. Carbohydr. Res. 1956; 11: 1-14
        • Heyns K.
        • Breuer H.
        • Paulsen H.
        Chem. Ber. 1957; 90: 1374-1386
        • Baynes J.W.
        • Thorpe S.R.
        • Murtiashaw M.H.
        Methods Enzymol. 1984; 106: 88-98
        • Frost A.A.
        • Pearson R.G.
        Kinetics and Mechanism. 2nd Ed. John Wiley and Sons, New York1962: 166-169
        • Heath H.
        • Hamlett Y.C.
        Diabetologia. 1976; 12: 43-46
        • Poulsom R.
        • Boot-Handford R.P.
        • Heath H.
        Exp. Eye Res. 1983; 37: 507-515
        • Tomlinson D.R.
        • Townsend J.
        • Fretten P.
        Diabetes. 1985; 34: 970-972
        • Garcia-Castineiras S.
        • Dillon J.
        • Spector A.
        Exp. Eye Res. 1978; 26: 461-476
        • Suarez G.
        • Novick J.
        • Oronsky A.L.
        Fed. Proc. 1984; 43 (abstr.): 2022