Advertisement

Type I Transglutaminase Accumulation in the Endoplasmic Reticulum May Be an Underlying Cause of Autosomal Recessive Congenital Ichthyosis*

  • Haibing Jiang
    Affiliations
    Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
    Search for articles by this author
  • Ralph Jans
    Affiliations
    Department of Dermatological Sciences, Institute of Cellular Medicine, University of Newcastle Upon Tyne, Newcastle upon Tyne NE1 7RU, United Kingdom
    Search for articles by this author
  • Wen Xu
    Affiliations
    Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
    Search for articles by this author
  • Ellen A. Rorke
    Affiliations
    Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
    Search for articles by this author
  • Chen-Yong Lin
    Affiliations
    Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
    Search for articles by this author
  • Ya-Wen Chen
    Affiliations
    Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
    Search for articles by this author
  • Shengyun Fang
    Affiliations
    Departments of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
    Search for articles by this author
  • Yongwang Zhong
    Affiliations
    Departments of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
    Search for articles by this author
  • Richard L. Eckert
    Correspondence
    To whom correspondence should be addressed: John F. B. Weaver Endowed Professor, Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201. Tel.: 410-706-3220; Fax: 410-706-8297
    Affiliations
    Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201

    Departments of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland 21201

    Departments of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
    Search for articles by this author
  • Author Footnotes
    * This work was supported, in whole or in part, by National Institutes of Health Grant R01 AR049713 (to R. L. E.).
Open AccessPublished:July 27, 2010DOI:https://doi.org/10.1074/jbc.M110.128645
      Type I transglutaminase (TG1) is an enzyme that is responsible for assembly of the keratinocyte cornified envelope. Although TG1 mutation is an underlying cause of autosomal recessive congenital ichthyosis, a debilitating skin disease, the pathogenic mechanism is not completely understood. In the present study we show that TG1 is an endoplasmic reticulum (ER) membrane-associated protein that is trafficked through the ER for ultimate delivery to the plasma membrane. Mutation severely attenuates this processing and a catalytically inactive point mutant, TG1-FLAG(C377A), accumulates in the endoplasmic reticulum and in aggresome-like structures where it is ubiquitinylated. This accumulation results from protein misfolding, as treatment with a chemical chaperone permits it to exit the endoplasmic reticulum and travel to the plasma membrane. ER accumulation is also observed for ichthyosis-associated TG1 mutants. Our findings suggest that misfolding of TG1 mutants leads to ubiquitinylation and accumulation in the ER and aggresomes, and that abnormal intracellular processing of TG1 mutants may be an underlying cause of ichthyosis.

      Introduction

      Transglutaminases comprise a family of multifunctional proteins that play an important role in protein stabilization and intracellular signaling (
      • Lorand L.
      • Graham R.M.
      ,
      • Eckert R.L.
      • Sturniolo M.T.
      • Broome A.M.
      • Ruse M.
      • Rorke E.A.
      ). The consensus view is that epidermal type I transglutaminase (TG1),
      The abbreviations used are: TG1
      transglutaminase type 1
      ER
      endoplasmic reticulum
      TMAO
      trimethylamine-N-oxide
      m.o.i.
      multiplicity of infection
      BiP
      binding immunoglobulin protein
      FC
      fluorescein cadaverine
      DMSO
      dimethyl sulfoxide
      EGFP
      enhanced green fluorescent protein
      EV
      empty vector.
      which is expressed in surface epithelia, has an important and essential role in catalyzing protein-protein cross-link formation leading to formation of the cornified envelope (
      • Hennings H.
      • Steinert P.
      • Buxman M.M.
      ,
      • Robinson N.A.
      • LaCelle P.T.
      • Eckert R.L.
      ,
      • Steinert P.M.
      • Candi E.
      • Kartasova T.
      • Marekov L.
      ,
      • Steinert P.M.
      • Marekov L.N.
      ,
      • Steven A.C.
      • Steinert P.M.
      ,
      • Yaffe M.B.
      • Murthy S.
      • Eckert R.L.
      ). The cornified envelope is a 15-nm thick structure comprised of covalently cross-linked proteins and lipids deposited adjacent to the inner surface of the plasma membrane in differentiating keratinocytes (
      • Steven A.C.
      • Steinert P.M.
      ,
      • Matoltsy A.G.
      ,
      • Matoltsy A.G.
      • Odland G.F.
      ,
      • Elias P.M.
      • Friend D.S.
      ,
      • Grayson S.
      • Elias P.M.
      ,
      • Matoltsy A.G.
      • Matoltsy M.N.
      ,
      • Nemes Z.
      • Marekov L.N.
      • Fésüs L.
      • Steinert P.M.
      ,
      • Steinert P.M.
      • Marekov L.N.
      ,
      • Wertz P.W.
      • Swartzendruber D.C.
      • Kitko D.J.
      • Madison K.C.
      • Downing D.T.
      ). It is assembled from soluble (e.g. involucrin and small proline-rich proteins) and non-soluble (e.g. loricrin, periplakin, and envoplakin) proteins (
      • Eckert R.L.
      • Yaffe M.B.
      • Crish J.F.
      • Murthy S.
      • Rorke E.A.
      • Welter J.F.
      ,
      • Kalinin A.E.
      • Kajava A.V.
      • Steinert P.M.
      ). TG1 catalyzes the formation of protein-protein bonds in which the amine acceptor is provided by the ϵ-amino group of a protein-bound lysine and the ultimate link is a N6-(γ-glutamyl)lysine isopeptide bond (
      • Folk J.E.
      ,
      • Folk J.E.
      • Finlayson J.S.
      ). The cornified envelope is an essential component of the epidermal barrier. Indeed a key role for TG1 in barrier assembly is indicated by impaired barrier function in Tgm1 knock-out mice (
      • Kuramoto N.
      • Takizawa T.
      • Takizawa T.
      • Matsuki M.
      • Morioka H.
      • Robinson J.M.
      • Yamanishi K.
      ). TG1 function is also required for normal epidermal function in humans. TG1 mutations are present in 50% of autosomal recessive congenital ichthyosis patients. Autosomal recessive congenital ichthyosis is a debilitating skin disease characterized by scaly epidermis and reduced barrier function. Over 90 different mutations of the Tgm1 gene have been identified in these patients (
      • Farasat S.
      • Wei M.H.
      • Herman M.
      • Liewehr D.J.
      • Steinberg S.M.
      • Bale S.J.
      • Fleckman P.
      • Toro J.R.
      ). Many of these mutations are deletion or point mutations within the catalytic domain, but disease-associated mutations are also located in other segments of the TG1 protein that do not include residues that are directly required for activity (
      • Farasat S.
      • Wei M.H.
      • Herman M.
      • Liewehr D.J.
      • Steinberg S.M.
      • Bale S.J.
      • Fleckman P.
      • Toro J.R.
      ,
      • Herman M.L.
      • Farasat S.
      • Steinbach P.J.
      • Wei M.H.
      • Toure O.
      • Fleckman P.
      • Blake P.
      • Bale S.J.
      • Toro J.R.
      ). These mutations are associated with reduced TG1 level and activity in tissue and cultured cells derived from patients (
      • Huber M.
      • Yee V.C.
      • Burri N.
      • Vikerfors E.
      • Lavrijsen A.P.
      • Paller A.S.
      • Hohl D.
      ).
      We know little about how TG1 is trafficked within cells and the impact of disease-associated mutation on these processes. In the present report we study TG1 trafficking and the impact of TG1 mutation on this process and on cell phenotype. Our studies indicate that TG1 is trafficked and processed in the ER and then delivered to the plasma membrane. In contrast, ichthyosis-associated TG1 mutants accumulate in the endoplasmic reticulum and are ubiquitinylated and also shuttled to aggresomes. We propose that inappropriate accumulation of mutant TG1 in intracellular organelles is a potential underlying cause of autosomal recessive congenital ichthyosis.

      Acknowledgments

      Electron microscopy was performed in the University of Maryland Dental School Imaging Core Facility, Director Dr. Ru-ching Hsia.

      REFERENCES

        • Lorand L.
        • Graham R.M.
        Nat. Rev. Mol. Cell Biol. 2003; 4: 140-156
        • Eckert R.L.
        • Sturniolo M.T.
        • Broome A.M.
        • Ruse M.
        • Rorke E.A.
        J. Invest. Dermatol. 2005; 124: 481-492
        • Hennings H.
        • Steinert P.
        • Buxman M.M.
        Biochem. Biophys. Res. Commun. 1981; 102: 739-745
        • Robinson N.A.
        • LaCelle P.T.
        • Eckert R.L.
        J. Invest. Dermatol. 1996; 107: 101-107
        • Steinert P.M.
        • Candi E.
        • Kartasova T.
        • Marekov L.
        J. Struct. Biol. 1998; 122: 76-85
        • Steinert P.M.
        • Marekov L.N.
        J. Biol. Chem. 1997; 272: 2021-2030
        • Steven A.C.
        • Steinert P.M.
        J. Cell Sci. 1994; 107: 693-700
        • Yaffe M.B.
        • Murthy S.
        • Eckert R.L.
        J Invest. Dermatol. 1993; 100: 3-9
        • Matoltsy A.G.
        J. Invest. Dermatol. 1976; 67: 20-25
        • Matoltsy A.G.
        • Odland G.F.
        J. Biophys. Biochem. Cytol. 1955; 1: 191-196
        • Elias P.M.
        • Friend D.S.
        J. Cell Biol. 1975; 65: 180-191
        • Grayson S.
        • Elias P.M.
        J. Invest. Dermatol. 1982; 78: 128-135
        • Matoltsy A.G.
        • Matoltsy M.N.
        J. Invest. Dermatol. 1966; 46: 127-129
        • Nemes Z.
        • Marekov L.N.
        • Fésüs L.
        • Steinert P.M.
        Proc. Natl. Acad. Sci. U.S.A. 1999; 96: 8402-8407
        • Steinert P.M.
        • Marekov L.N.
        Mol. Biol. Cell. 1999; 10: 4247-4261
        • Wertz P.W.
        • Swartzendruber D.C.
        • Kitko D.J.
        • Madison K.C.
        • Downing D.T.
        J. Invest. Dermatol. 1989; 93: 169-172
        • Eckert R.L.
        • Yaffe M.B.
        • Crish J.F.
        • Murthy S.
        • Rorke E.A.
        • Welter J.F.
        J. Invest. Dermatol. 1993; 100: 613-617
        • Kalinin A.E.
        • Kajava A.V.
        • Steinert P.M.
        Bioessays. 2002; 24: 789-800
        • Folk J.E.
        Annu. Rev. Biochem. 1980; 49: 517-531
        • Folk J.E.
        • Finlayson J.S.
        Adv. Protein Chem. 1977; 31: 1-133
        • Kuramoto N.
        • Takizawa T.
        • Takizawa T.
        • Matsuki M.
        • Morioka H.
        • Robinson J.M.
        • Yamanishi K.
        J. Clin. Invest. 2002; 109: 243-250
        • Farasat S.
        • Wei M.H.
        • Herman M.
        • Liewehr D.J.
        • Steinberg S.M.
        • Bale S.J.
        • Fleckman P.
        • Toro J.R.
        J. Med. Genet. 2009; 46: 103-111
        • Herman M.L.
        • Farasat S.
        • Steinbach P.J.
        • Wei M.H.
        • Toure O.
        • Fleckman P.
        • Blake P.
        • Bale S.J.
        • Toro J.R.
        Hum. Mutat. 2009; 30: 537-547
        • Huber M.
        • Yee V.C.
        • Burri N.
        • Vikerfors E.
        • Lavrijsen A.P.
        • Paller A.S.
        • Hohl D.
        J. Biol. Chem. 1997; 272: 21018-21026
        • Sturniolo M.T.
        • Chandraratna R.A.
        • Eckert R.L.
        Oncogene. 2005; 24: 2963-2972
        • Sturniolo M.T.
        • Dashti S.R.
        • Deucher A.
        • Rorke E.A.
        • Broome A.M.
        • Chandraratna R.A.
        • Keepers T.
        • Eckert R.L.
        J. Biol. Chem. 2003; 278: 48066-48073
        • Jans R.
        • Sturniolo M.T.
        • Eckert R.L.
        J. Invest. Dermatol. 2008; 128: 517-529
        • Dashti S.R.
        • Efimova T.
        • Eckert R.L.
        J. Biol. Chem. 2001; 276: 8059-8063
        • Dashti S.R.
        • Efimova T.
        • Eckert R.L.
        J. Biol. Chem. 2001; 276: 27214-27220
        • Efimova T.
        • Broome A.M.
        • Eckert R.L.
        J. Biol. Chem. 2003; 278: 34277-34285
        • Kasturi L.
        • Sizemore N.
        • Eckert R.L.
        • Martin K.
        • Rorke E.A.
        Exp. Cell Res. 1993; 205: 84-90
        • Sizemore N.
        • Kasturi L.
        • Gorodeski G.
        • Eckert R.L.
        • Jetten A.M.
        • Rorke E.A.
        Differentiation. 1993; 54: 219-225
        • Braakman I.
        • Hebert D.N.
        Curr. Protoc. Protein Sci. 2001; 14: 1-15
        • Liscaljet I.M.
        • Kleizen B.
        • Braakman I.
        Buchner J. Kiefhaber T. Handbood of Protein Folding. Vol. 3. Wiley-VCH Verlag GmbH & Co., Weinheim2004: 73-104
        • Steinert P.M.
        • Chung S.I.
        • Kim S.Y.
        Biochem. Biophys. Res. Commun. 1996; 221: 101-106
        • Greenberg C.S.
        • Birckbichler P.J.
        • Rice R.H.
        FASEB J. 1991; 5: 3071-3077
        • Rice R.H.
        • Chakravarty R.
        • Chen J.
        • O'Callahan W.
        • Rubin A.L.
        Adv. Exp. Med. Biol. 1988; 231: 51-61
        • Michel S.
        • Démarchez M.
        J. Invest. Dermatol. 1988; 90: 472-474
        • Steinert P.M.
        • Kim S.Y.
        • Chung S.I.
        • Marekov L.N.
        J. Biol. Chem. 1996; 271: 26242-26250
        • Phillips M.A.
        • Qin Q.
        • Mehrpouyan M.
        • Rice R.H.
        Biochemistry. 1993; 32: 11057-11063
        • Poumay Y.
        • Dupont F.
        • Marcoux S.
        • Leclercq-Smekens M.
        • Hérin M.
        • Coquette A.
        Arch. Dermatol. Res. 2004; 296: 203-211
        • Kim S.Y.
        • Kim I.G.
        • Chung S.I.
        • Steinert P.M.
        J. Biol. Chem. 1994; 269: 27979-27986
        • Pedersen L.C.
        • Yee V.C.
        • Bishop P.D.
        • Le Trong I.
        • Teller D.C.
        • Stenkamp R.E.
        Protein Sci. 1994; 3: 1131-1135
        • Chakravarty R.
        • Rice R.H.
        J. Biol. Chem. 1989; 264: 625-629
        • Eckert R.L.
        • Sturniolo M.T.
        • Broome A.M.
        • Ruse M.
        • Rorke E.A.
        Prog. Exp. Tumor Res. 2005; 38: 115-124
        • Ni M.
        • Lee A.S.
        FEBS Lett. 2007; 581: 3641-3651
        • Vembar S.S.
        • Brodsky J.L.
        Nat. Rev. Mol. Cell Biol. 2008; 9: 944-957
        • Nebenführ A.
        • Ritzenthaler C.
        • Robinson D.G.
        Plant Physiol. 2002; 130: 1102-1108
        • Short B.
        • Barr F.A.
        Curr. Biol. 2003; 13: R311-R313
        • Bergeron J.J.
        • Brenner M.B.
        • Thomas D.Y.
        • Williams D.B.
        Trends Biochem. Sci. 1994; 19: 124-128
        • Ohlendieck K.
        Methods Mol. Biol. 2004; 244: 283-293
        • Munro S.
        • Pelham H.R.
        Cell. 1986; 46: 291-300
        • Bole D.G.
        • Hendershot L.M.
        • Kearney J.F.
        J. Cell Biol. 1986; 102: 1558-1566
        • Ou W.J.
        • Bergeron J.J.
        • Li Y.
        • Kang C.Y.
        • Thomas D.Y.
        J. Biol. Chem. 1995; 270: 18051-18059
        • Sitia R.
        • Braakman I.
        Nature. 2003; 426: 891-894
        • Green H.
        The Harvey Lectures. 1980; 74: 101-139
        • Pincus J.H.
        • Chung S.I.
        • Chace N.M.
        • Gross M.
        Arch. Biochem. Biophys. 1975; 169: 724-730
        • Lajemi M.
        • Demignot S.
        • Borge L.
        • Thenet-Gauci S.
        • Adolphe M.
        Histochem. J. 1997; 29: 593-606
        • Gray A.C.
        • Clothier R.H.
        Toxicol. In Vitro. 2001; 15: 427-431
        • Kopito R.R.
        Trends Cell Biol. 2000; 10: 524-530
        • Schiebel E.
        Curr. Opin. Cell Biol. 2000; 12: 113-118
        • Joshi H.C.
        Bioessays. 1993; 15: 637-643
        • Meusser B.
        • Hirsch C.
        • Jarosch E.
        • Sommer T.
        Nat. Cell Biol. 2005; 7: 766-772
        • Zou Q.
        • Bennion B.J.
        • Daggett V.
        • Murphy K.P.
        J. Am. Chem. Soc. 2002; 124: 1192-1202
        • Gong B.
        • Zhang L.Y.
        • Pang C.P.
        • Lam D.S.
        • Yam G.H.
        Mol. Vis. 2009; 15: 2829-2840
        • Ogawa H.
        • Goldsmith L.A.
        J. Biol. Chem. 1976; 251: 7281-7288
        • Negi M.
        • Colbert M.C.
        • Goldsmith L.A.
        J. Invest. Dermatol. 1985; 85: 75-78
        • Steinert P.M.
        • Candi E.
        • Tarcsa E.
        • Marekov L.N.
        • Sette M.
        • Paci M.
        • Ciani B.
        • Guerrieri P.
        • Melino G.
        Cell Death. Differ. 1999; 6: 916-930
        • Russell L.J.
        • DiGiovanna J.J.
        • Rogers G.R.
        • Steinert P.M.
        • Hashem N.
        • Compton J.G.
        • Bale S.J.
        Nat. Genet. 1995; 9: 279-283
        • Kim S.Y.
        • Chung S.I.
        • Steinert P.M.
        J. Biol. Chem. 1995; 270: 18026-18035
        • Thacher S.M.
        • Rice R.H.
        Cell. 1985; 40: 685-695
        • Phillips M.A.
        • Stewart B.E.
        • Qin Q.
        • Chakravarty R.
        • Floyd E.E.
        • Jetten A.M.
        • Rice R.H.
        Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 9333-9337
        • Chakravarty R.
        • Rong X.H.
        • Rice R.H.
        Biochem. J. 1990; 271: 25-30
        • Rice R.H.
        • Green H.
        Cell. 1977; 11: 417-422
        • Robinson N.A.
        • Lapic S.
        • Welter J.F.
        • Eckert R.L.
        J. Biol. Chem. 1997; 272: 12035-12046
        • Pal R.
        • Cristan E.A.
        • Schnittker K.
        • Narayan M.
        Biochem. Biophys. Res. Commun. 2010; 392: 567-571
        • Nickel W.
        Eur. J. Biochem. 2003; 270: 2109-2119
        • Nickel W.
        • Rabouille C.
        Nat. Rev. Mol. Cell Biol. 2009; 10: 148-155
        • Planey S.L.
        • Keay S.K.
        • Zhang C.O.
        • Zacharias D.A.
        Mol. Biol. Cell. 2009; 20: 1454-1463
        • Nickel W.
        • Seedorf M.
        Annu. Rev. Cell Dev. Biol. 2008; 24: 287-308
        • Polakowska R.R.
        • Eickbush T.
        • Falciano V.
        • Razvi F.
        • Goldsmith L.A.
        Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 4476-4480
        • Boutin J.A.
        Cell Signal. 1997; 9: 15-35
        • Boutin J.A.
        • Ferry G.
        • Ernould A.P.
        • Maes P.
        • Remond G.
        • Vincent M.
        Eur. J. Biochem. 1993; 214: 853-867
        • Hirsch C.
        • Gauss R.
        • Horn S.C.
        • Neuber O.
        • Sommer T.
        Nature. 2009; 458: 453-460
        • Younger J.M.
        • Ren H.Y.
        • Chen L.
        • Fan C.Y.
        • Fields A.
        • Patterson C.
        • Cyr D.M.
        J. Cell Biol. 2004; 167: 1075-1085
        • Markossian K.A.
        • Kurganov B.I.
        Biochemistry. 2004; 69: 971-984
        • Candi E.
        • Melino G.
        • Lahm A.
        • Ceci R.
        • Rossi A.
        • Kim I.G.
        • Ciani B.
        • Steinert P.M.
        J. Biol. Chem. 1998; 273: 13693-13702
        • Choate K.A.
        • Williams M.L.
        • Khavari P.A.
        J. Invest. Dermatol. 1998; 110: 8-12
        • Ahvazi B.
        • Steinert P.M.
        Exp. Mol. Med. 2003; 35: 228-242
        • Ahvazi B.
        • Boeshans K.M.
        • Idler W.
        • Baxa U.
        • Steinert P.M.
        J. Biol. Chem. 2003; 278: 23834-23841
        • Breckenridge D.G.
        • Germain M.
        • Mathai J.P.
        • Nguyen M.
        • Shore G.C.
        Oncogene. 2003; 22: 8608-8618