Introduction
- Wright C.C.
- Hsu F.F.
- Arnett E.
- Dunaj J.L.
- Davidson P.M.
- Pacheco S.A.
- Harriff M.J.
- Lewinsohn D.M.
- Schlesinger L.S.
- Purdy G.E.
- Wright C.C.
- Hsu F.F.
- Arnett E.
- Dunaj J.L.
- Davidson P.M.
- Pacheco S.A.
- Harriff M.J.
- Lewinsohn D.M.
- Schlesinger L.S.
- Purdy G.E.
- Martinot A.J.
- Farrow M.
- Bai L.
- Layre E.
- Cheng T.-Y.
- Tsai J.H.
- Iqbal J.
- Annand J.W.
- Sullivan Z.A.
- Hussain M.M.
- Sacchettini J.
- Moody D.B.
- Seeliger J.C.
- Rubin E.J.
- Touchette M.H.
- Van Vlack E.R.
- Bai L.
- Kim J.
- Cognetta 3rd, A.B.
- Previti M.L.
- Backus K.M.
- Martin D.W.
- Cravatt B.F.
- Seeliger J.C.
Results
LpqN interacts with D2 loops of mycolate lipid transporters MmpL3 and MmpL11
Insert in pUAB200 | Insert in pUAB300 | Trim MIC (μg/ml) |
---|---|---|
— | Rv2763 (dfr) positive control | >200 |
— | LpqN | <6.25 |
MmpL3 D1 | — | <6.25 |
MmpL3 D1 | LpqN | <6.25 |
MmpL11 D1 | — | <6.25 |
MmpL11 D1 | LpqN | <6.25 |
MmpL3 D2 | — | <6.25 |
MmpL3 D2 | LpqN | 100 |
MmpL11 D2 | — | <6.25 |
MmpL11 D2 | LpqN | 50 |
LpqN interacts with cell envelope lipid biosynthetic enzymes
Protein | CFP (background) | CFP + LpqN (strong interactions) | Cross-linked (weak interactions) |
---|---|---|---|
Rv0583c | lipoprotein lpqN | 54 | 1862 | 1774 |
Rv2220 | glutamine synthetase glnA1 | 15 | 54 | 121 |
Rv3804c | fibronectin-binding protein antigen fbpA, Ag85A | 18 | 35 | 100 |
Rv1908c | catalase-peroxidase-peroxynitritase T katG | 22 | 46 | 83 |
Rv2780 | secreted l-alanine dehydrogenase ald | 11 | 32 | 76 |
Rv1475c | aconitate hydratase A acn | 3 | 25 | 60 |
Rv1980c | immunogenic protein mpt64 | 16 | 21 | 20 |
Rv0350 | chaperone protein dnaK | 50 | 60 | 51 |
Rv0896 | citrate synthase I gltA2 | 3 | 2 | 57 |
Rv006c | isocitrate dehydrogenase icd2 | 0 | 0 | 33 |
Rv3248c | adenosylhomocysteinase sahH | 4 | 4 | 49 |
Rv0440 | 60-kDa chaperonin groEL2 | 9.818 | 15.6 | 18.947 |
Rv1098c | fumarate hydratase fumC | 8 | 8 | 20 |
Rv0211 | phosphoenolpyruvate carboxykinase pckA | 4 | 6 | 26 |
Rv2940c | mycocerosic acid synthase mas | 0 | 3 | 27 |
Rv0363c | fructose-bisphosphate aldolase fba | 2 | 11 | 23 |
Rv2467 | aminopeptidase N pepN | 2 | 5 | 23 |
Rv3418 | 10-kDa chaperonin groS | 7 | 4 | 22 |
Rv2030c | uncharacterized protein | 1 | 8 | 21 |
Rv0462 | dihydrolipoamide dehydrogenase lpd | 0 | 2 | 20 |
Rv1017c | ribose-phosphate pyrophosphokinase prsA | 7 | 13 | 20 |
Rv1074c | acetyl-CoA acetyltransferase fadA3 | 0 | 3 | 20 |
Rv1886c | secreted fibronectin-binding protein fbpB, Ag85B | 0 | 3 | 19 |
Rv1093 | serine hydroxymethyltransferase 1 glyA1 | 3 | 6 | 19 |
Rv2244 | meromycolate extension acyl carrier protein acpM | 14 | 13 | 18 |
Rv2031c | α-crystallin hspX | 1 | 4 | 17 |
Rv0315 | probable β-1,3-glucanase precursor | 0 | 0 | 12 |
Rv2146c | N-acetyltransferase eis | 0 | 4 | 11 |
Rv1837c | malate synthase G glcB | 0 | 0 | 7 |
Rv0934 | periplasmic phosphate-binding lipoprotein pstS1 | 0 | 1 | 6 |
Rv0379 | protein transport protein secE2 | 2 | 0 | 5 |
Rv1860 | alanine and proline rich secreted protein apa | 2 | 0 | 5 |
Rv1392 | S-adenosylmethionine synthetase metK | 0 | 0 | 5 |
Rv0164 | conserved hypothetical protein TB18.5 | 0 | 0 | 4 |
Rv1448c | transaldolase tal | 0 | 0 | 4 |
Rv1449c | transketolase tkt | 0 | 0 | 4 |
Rv3628 | inorganic pyrophosphatase ppa | 0 | 0 | 4 |
- Touchette M.H.
- Van Vlack E.R.
- Bai L.
- Kim J.
- Cognetta 3rd, A.B.
- Previti M.L.
- Backus K.M.
- Martin D.W.
- Cravatt B.F.
- Seeliger J.C.
- Touchette M.H.
- Van Vlack E.R.
- Bai L.
- Kim J.
- Cognetta 3rd, A.B.
- Previti M.L.
- Backus K.M.
- Martin D.W.
- Cravatt B.F.
- Seeliger J.C.
LpqN contributes to Mtb biofilm lipid composition

The LpqN crystal structure suggests that LpqN may directly bind lipids
apo-LpqN (6E5D) | LpqN–6LT (6E5F) | LpqN–T6D (6MNA) | SeMet–LpqN | |
---|---|---|---|---|
Wavelength (Å) | 0.9792 | 0.9792 | 0.9792 | 0.9792 |
Resolution (Å) | 48.11–1.65 (1.71–1.65) | 56.57–1.37 (1.41–1.37) | 56.25–1.74 (1.85–1.74) | 48.59–2.20 (2.32–2.20) |
Unit cell parameters | ||||
a, b, c (Å) | 99.3, 55.5, 44.6 | 80.0, 80.0, 59.2 | 79.5, 79.5, 60.0 | 99.0, 56.4, 44.5 |
α, β, γ (°) | 90.0, 103.9, 90.0 | 90.0, 90.0, 90.0 | 90.0, 90.0, 90.0 | 90.0, 104.8, 90.0 |
Space group | C121 | I4 | I4 | C121 |
Total no. of reflections | 187,144 | 334,562 | 337,062 | 155,435 |
Total no. of unique reflections | 27,327 | 39,223 | 19,157 | 12,099 |
Wilson B factor (Å2) | 24.2 | 20.73 | 27.5 | 42.6 |
Completeness (%) | 96.1 (87.3) | 99.7 (98.0) | 99.3 (98.5) | 99.6 (98.2) |
Multiplicity | 6.9 (5.3) | 8.4 (3.2) | 17.6 (17.6) | 12.8 (13.3) |
CC1/2 (%) | 99.9 (95.6) | 99.9 (64.5) | 99.9 (64.3) | 99.8 (98.2) |
I/σ(I) | 19.0 (2.9) | 18.2 (1.9) | 11.1 (1.5) | 15.3 (5.1) |
Phasing | ||||
No. of sites | 2 | |||
Figure of merit | 0.305 | |||
Refinement | ||||
Rwork (%) | 18.57 | 17.8 | 18.45 | |
Rfree (%) | 20.85 | 20.35 | 21.75 | |
No. of. atoms | ||||
Protein | 2654 | 2661 | 2559 | |
Water | 140 | 107 | 101 | |
Ligand | 81 | 74 | ||
B factors (Å2) | ||||
Protein | 35.17 | 30.96 | 34.88 | |
Water | 41.72 | 37.98 | 40.13 | |
Ligand | 70.05 | 69.63 | ||
RMSDs | ||||
Bond lengths (Å) | 0.002 | 0.004 | 0.012 | |
Bond angle (°) | 0.545 | 0.764 | 1.242 | |
Ramachandran plot (%) | ||||
Favored regions | 96.84 | 98.14 | 100 | |
Allowed regions | 3.2 | 1.8 | 0 | |
Outliers | 0 | 0 | 0 |


Discussion
- Touchette M.H.
- Van Vlack E.R.
- Bai L.
- Kim J.
- Cognetta 3rd, A.B.
- Previti M.L.
- Backus K.M.
- Martin D.W.
- Cravatt B.F.
- Seeliger J.C.
Experimental procedures
Bacterial strains and growth conditions
Lipid isolation and analyses
- Daffe M.
- Brennan P.J.
- McNeil M.
- Howard N.C.
- Marin N.D.
- Ahmed M.
- Rosa B.A.
- Martin J.
- Bambouskova M.
- Sergushichev A.
- Loginicheva E.
- Kurepina N.
- Rangel-Moreno J.
- Chen L.
- Kreiswirth B.N.
- Klein R.S.
- Balada-Llasat J.M.
- Torrelles J.B.
- et al.
Mycobacterial protein fragment complementation assay
Protein purification
LpqN–CFP pulldowns
Protein mass spectrometry
LpqN expression and purification for crystallization studies
Crystallization of LpqN
Data collection, structural determination, and refinement
LpqN–MmpL11/Ag85A interaction
Author contributions
Acknowledgments
Supplementary Material
References
Global Tuberculosis Report (2018) World Health Organization, Geneva, Switzerland
- Mycolic acids: structure, biosynthesis and physiological functions.Prog. Lipid Res. 1998; 37 (9829124): 143-179
- Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane.Sci. Rep. 2017; 7 (28993692): 12807
- Mycolic acids: structures, biosynthesis, and beyond.Chem. Biol. 2014; 21 (24374164): 67-85
- Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids.Proc. Natl. Acad. Sci. U.S.A. 2017; 114 (28973928): 11205-11210
- Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids.Nature. 2014; 505 (24336213): 218-222
- MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria.Tuberculosis. 2016; 100 (27553408): 32-45
- The diverse family of MmpL transporters in mycobacteria: from regulation to antimicrobial developments.Mol. Microbiol. 2017; 104 (28340510): 889-904
- MmpL proteins in physiology and pathogenesis of M. tuberculosis.Microorganisms. 2019; 7 (30841535): E70
- Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance.Infect. Immun. 2005; 73 (15908378): 3492-3501
- RND efflux pumps: structural information translated into function and inhibition mechanisms.Curr. Top. Med. Chem. 2013; 13 (24200360): 3079-3100
- Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.Nature. 1998; 393 (9634230): 537-544
- Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane.Nat. Chem. Biol. 2012; 8 (22344175): 334-341
- The three Mycobacterium tuberculosis antigen 85 isoforms have unique substrates and activities determined by non-active site regions.J. Biol. Chem. 2014; 289 (25028517): 25041-25053
- Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis.Science. 1997; 276 (9162010): 1420-1422
- Essentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression.Sci. Rep. 2017; 7 (28240248): 43495
- Therapeutic potential of the Mycobacterium tuberculosis mycolic acid transporter, MmpL3.Antimicrob. Agents Chemother. 2016; 60 (27297488): 5198-5207
- MmpL11 protein transports mycolic acid–containing lipids to the mycobacterial cell wall and contributes to biofilm formation in Mycobacterium smegmatis.J. Biol. Chem. 2013; 288 (23836904): 24213-24222
- The Mycobacterium tuberculosis MmpL11 cell wall lipid transporter is important for biofilm formation, intracellular growth and non-replicating persistence.Infect. Immun. 2017;
- Bacterial multidrug efflux transporters.Annu. Rev. Biophys. 2014; 43 (24702006): 93-117
- AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants.J. Bacteriol. 1996; 178 (8550435): 306-308
- Molecular cloning and characterization of acrA and acrE genes of Escherichia coli.J. Bacteriol. 1993; 175 (8407802): 6299-6313
- A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria.J. Bacteriol. 1994; 176 (8021163): 3825-3831
- A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria.FEMS Microbiol. Lett. 1997; 156 (9368353): 1-8
- Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli.Proc. Natl. Acad. Sci. U.S.A. 1999; 96 (10377390): 7190-7195
- LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis.EMBO J. 2006; 25 (16541102): 1436-1444
- Mycobacterial metabolic syndrome: LprG and Rv1410 regulate triacylglyceride levels, growth rate and virulence in Mycobacterium tuberculosis.PLoS Pathog. 2016; 12 (26751071): e1005351-e1005426
- A screen for protein–protein interactions in live mycobacteria reveals a functional link between the virulence-associated lipid transporter LprG and the mycolyltransferase antigen 85A.ACS Infect. Dis. 2017; 3 (28276676): 336-348
- Siderophore transport by MmpL5-MmpS5 protein complex in Mycobacterium tuberculosis.J. Inorg. Biochem. 2017; 170 (28231453): 75-84
- The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins.J. Mol. Microbiol. Biotechnol. 1999; 1 (10941792): 107-125
- The structure and interactions of periplasmic domains of crucial MmpL membrane proteins from Mycobacterium tuberculosis.Chem. Biol. 2015; 22 (26278184): 1098-1107
- Dissecting virulence pathways of Mycobacterium tuberculosis through protein–protein association.Proc. Natl. Acad. Sci. U.S.A. 2006; 103 (16844784): 11346-11351
- Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2.Nature Struct. Mol. Biol. 2010; 17: 1088-1095
- Dali server: conservation mapping in 3D.Nucleic Acids Res. 2010; 38 (20457744): W545-W549
- Structure-based epitope mapping of Mycobacterium tuberculosis secretary antigen MTC28.J. Biol. Chem. 2016; 291 (27189947): 13943-13954
- Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide.Proc. Natl. Acad. Sci. U.S.A. 2008; 105 (18184806): 488-493
- Comparative structural analysis of lipid binding START domains.PLoS One. 2011; 6 (21738568): e19521
- Two accessory proteins govern MmpL3 mycolic acid transport in mycobacteria.mBio. 2019; 10 (31239378): e00850-e00919
- An Mtb-human protein–protein interaction map identifies a switch between host antiviral and antibacterial responses.Mol. Cell. 2018; 71 (30118682): 637-648.e5
- Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis.Microbiology. 2002; 148 (12368434): 3007-3017
- Recombineering in Mycobacterium tuberculosis.Nat. Methods. 2007; 4 (17179933): 147-152
- New use of BCG for recombinant vaccines.Nature. 1991; 351 (1904554): 456-460
- Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterization of oligoglycosyl alditol fragments by gas chromatography/mass spectrometry and by 1H and 13C NMR analyses.J. Biol. Chem. 1990; 265 (2108960): 6734-6743
- Techniques for accurate protein identification in shotgun proteomic studies of human, mouse, bovine, and chicken lenses.J. Ocul. Biol. Dis. Infor. 2009; 2 (20157357): 223-234
- [20] Processing of X-ray diffraction data collected in oscillation mode.Methods in Enzymol. 1997; 276 (27799103): 307-326
- Substructure solution with SHELXD.Acta Crystallogr D Biol Crystallogr. 2002; 58 (12351820): 1772-1779
- HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs.J Appl Cryst. 2004; 37: 843-844
- Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard.Acta Crystallogr D Biol Crystallogr. 2009; 65 (19465773): 582-601
- PHENIX: building new software for automated crystallographic structure determination.Acta Crystallogr D Biol Crystallogr. 2002; 58 (12393927): 1948-1954
- Recent developments in classical density modification.Acta Crystallogr D Biol Crystallogr. 2010; 66 (20383000): 470-478
- Coot: model-building tools for molecular graphics.Acta Crystallogr D Biol Crystallogr. 2004; 60 (15572765): 2126-2132
- Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes.Nat. Microbiol. 2018; 3 (30224802): 1099-1108
Article info
Publication history
Footnotes
This work was supported by NIAID, National Institutes of Health Grants R21 AI113074 (to G. E. P.), R01 AI123148 (to G. E. P. and E. W. Y.), and by Grant T32 AI007472 (to G. C. M.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains Tables S1 and S2 and Figs. S1–S5.
The atomic coordinates and structure factors (codes 6E5D, 6E5F, and 6MNA) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy