Introduction
Results
Overall structure of the CpaAB complex

Data collection | |
Space group | P1 |
Cell dimensions | |
a, b, c (Å) | 110.747, 118.489, 129.583 |
α, β, γ (°) | 108.94, 103.97, 100.10 |
Resolution (Å) | 50.0–2.60 (2.64–2.60) |
Rpim | 4.0 (58.8) |
I/σI | 16.7 (1.26) |
CC(1/2) | 0.99 (0.515) |
Completeness, (%) | 96.8 (96.0) |
Redundancy | 3.5 (3.5) |
No. of reflections | 173,168 |
Refinement | |
Rwork/Rfree (%) | 22.55/23.99 |
No. of atoms | |
Protein | 31,899 |
Ligand/Ion | 116 |
Water | 293 |
Ramachandran (%) | |
Outliers | 0 |
Allowed | 1.62 |
Favored | 98.38 |
R.m.s. deviations | |
Bond length Å) | 0.002 |
Bond angles (°) | 0.465 |
Small angle X-ray scattering (SAXS) of CpaAB demonstrates the solution state is a 1:1 complex

Comparison of CpaAB to a known T2SS chaperone:substrate complex

CpaA contains a canonical zinc metalloprotease domain


CpaA possesses four glycan-binding–like domains
CpaA putative substrate-binding cleft
CpaB shares similarity to a protease prodomain

The CpaB tail blocks access to the CpaA catalytic site
CpaB does not protect CpaA from self-proteolysis
The C-terminal tail of CpaB is dispensable for secretion of CpaA

Discussion
Experimental procedures
Strains, plasmids, and growth conditions
Protein expression, purification, and crystallization
Data collection and structure determination
Small angle X-ray scattering
Generation of CpaA and CpaB point mutations and deletions
Immunoblotting
Factor V cleavage assay
Author contributions
Acknowledgments
Supplementary Material
References
- Combination antibiotic treatment versus monotherapy for multidrug-resistant, extensively drug-resistant, and pandrug-resistant Acinetobacter infections: a systematic review.Eur. J. Clin. Microbiol. Infect. Dis. 2014; 33 (24832022): 1675-1685
- Acinetobacter baumannii: emergence of a successful pathogen.Clin. Microbiol. Rev. 2008; 21 (18625687): 538-582
- The secretome of Acinetobacter baumannii ATCC 17978 type II secretion system reveals a novel plasmid encoded phospholipase that could be implicated in lung colonization.Int. J. Med. Microbiol. 2016; 306 (27713027): 633-641
- Medically relevant Acinetobacter species require a type II secretion system and specific membrane-associated chaperones for the export of multiple substrates and full virulence.PLoS Pathog. 2016; 12 (26764912): e1005391
- Pathogenic Acinetobacter species have a functional type I secretion system and contact-dependent inhibition systems.J. Biol. Chem. 2017; 292 (28373284): 9075-9087
- Acinetobacter baumannii is dependent on the type II secretion system and its substrate LipA for lipid utilization and in vivo fitness.J. Bacteriol. 2015; 198 (26668261): 711-719
- Genomic and functional analysis of the type VI secretion system in Acinetobacter.PLoS ONE. 2013; 8 (23365692): e55142
- Defining the interaction of the protease CpaA with its type II secretion chaperone CpaB and its contribution to virulence in Acinetobacter species.J. Biol. Chem. 2017; 292 (10.1074/jbc.M117.808394): 19628-19638
- CpaA a novel protease from Acinetobacter baumannii clinical isolates deregulates blood coagulation.FEMS Microbiol. Lett. 2014; 356 (24910020): 53-61
- CpaA is a glycan-specific adamalysin-like protease secreted by Acinetobacter baumannii that inactivates coagulation factor XII.Mbio. 2018; 9 (30563903): e01606-18
- Lipase-specific foldases.Chembiochem. 2004; 5 (14760735): 152-161
- Chaperones of the type III secretion pathway: jacks of all trades.Mol. Microbiol. 2002; 46 (12366826): 1-11
- The multitalented type III chaperones: all you can do with 15 kDa.FEMS Microbiol Lett. 2003; 219 (12620614): 151-158
- CpaA is a glycan-specific adamalysin-like protease secreted by Acinetobacter baumannii that inactivates coagulation factor XII.mBio. 2018; 9 (30563903): e01606
- Catalytic domain architecture of metzincin metalloproteases.J. Biol. Chem. 2009; 284 (19201757): 15353-15357
- Structural insight into the bacterial mucinase StcE essential to adhesion and immune evasion during enterohemorrhagic E. coli infection.Structure. 2012; 20 (22483117): 707-717
- Dali server: conservation mapping in 3D.Nucleic Acids Res. 2010; 38 (20457744): 545-549
- StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor.Mol. Microbiol. 2002; 45 (12123444): 277-288
- Modulation of neutrophil function by a secreted mucinase of Escherichia coli O157:H7.PLoS Pathog. 2009; 5 (19247439): e1000320
- Structure, function and latency regulation of a bacterial enterotoxin potentially derived from a mammalian adamalysin/ADAM xenolog.Proc. Natl. Acad. Sci. U.S.A. 2011; 108 (21233422): 1856-1861
- Bacteroides fragilis: a possible cause of acute diarrheal disease in newborn lambs.Infect. Immun. 1984; 44 (6538870): 241-244
- The enterotoxin of Bacteroides fragilis is a metalloprotease.Infect. Immun. 1995; 63 (7806355): 175-181
- Structural aspects of the metzincin clan of metalloendopeptidases.Mol. Biotechnol. 2003; 24 (12746556): 157-202
- New horizons for the infectious diseases specialist: how gut microflora promote health and disease.Curr. Infect. Dis. Rep. 2008; 10 (18462581): 92-98
- Enterotoxigenic Bacteroides fragilis.Curr. Infect. Dis. Rep. 2008; 10 (18462582): 99-104
- Proenzyme structure and activation of astacin metallopeptidase.J. Biol. Chem. 2010; 285 (20202938): 13958-13965
- Barrett A.J. Rawlings N.D. Woessner J.F. Handbook of proteolytic enzymes. Elsevier Academic Press, London2004
- HKL-3000: the integration of data reduction and structure solution: from diffraction images to an initial model in minutes.Acta Crystallogr. D Biol. Crystallogr. 2006; 62 (16855301): 859-866
- Experimental phasing with SHELXC/D/E: combining chain tracing with density modification.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20383001): 479-485
- The CCP4 suite: programs for protein crystallography.Acta Crystallogr. D Biol. Crystallogr. 1994; 50 (15299374): 760-763
- Refinement of macromolecular structures by the maximum-likelihood method.Acta Crystallogr. D Biol. Crystallogr. 1997; 53 (15299926): 240-255
- Coot: model-building tools for molecular graphics.Acta Crystallogr. D Biol. Crystallogr. 2004; 60 (15572765): 2126-2132
- PHENIX: building new software for automated crystallographic structure determination.Acta Crystallogr. D Biol. Crystallogr. 2002; 58 (12393927): 1948-1954
- Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS).Nat. Methods. 2009; 6 (19620974): 606-612
- New developments in the ATSAS program package for small-angle scattering data analysis.J. Appl. Crystallogr. 2012; 45 (25484842): 342-350
- Modification of a PCR-based site-directed mutagenesis method.BioTechniques. 1997; 23 (574) (9343663): 570-571
Article info
Publication history
Footnotes
This work was supported by the National Institutes of Health Intramural Research Program of the NIAID and the Burroughs Wellcome Fund (to N. H. T.), a startup grant from the Department of Molecular Microbiology, Washington University in St. Louis (to M. F. F.), and Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarships-Doctoral Program (NSERC PGSD) and Washington University in St. Louis Schlesinger awards (to R. L. K.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
The atomic coordinates and structure factors (code 6O38) have been deposited in the Protein Data Bank (http://wwpdb.org/).
This article contains Tables S1–S4 and Figs. S1–S6.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy