Introduction
- Mihailescu M.
- Sorci M.
- Seckute J.
- Silin V.I.
- Hammer J.
- Perrin Jr., B.S.
- Hernandez J.I.
- Smajic N.
- Shrestha A.
- Bogardus K.A.
- Greenwood A.I.
- Fu R.
- Blazyk J.
- Pastor R.W.
- Nicholson L.K.
- Belfort G.
- Cotten M.L.
- Hayden R.M.
- Goldberg G.K.
- Ferguson B.M.
- Schoeneck M.W.
- Libardo M.D.
- Mayeux S.E.
- Shrestha A.
- Bogardus K.A.
- Hammer J.
- Pryshchep S.
- Lehman H.K.
- McCormick M.L.
- Blazyk J.
- Angeles-Boza A.M.
- Fu R.
- Cotten M.L.
- Mihailescu M.
- Sorci M.
- Seckute J.
- Silin V.I.
- Hammer J.
- Perrin Jr., B.S.
- Hernandez J.I.
- Smajic N.
- Shrestha A.
- Bogardus K.A.
- Greenwood A.I.
- Fu R.
- Blazyk J.
- Pastor R.W.
- Nicholson L.K.
- Belfort G.
- Cotten M.L.
- Hayden R.M.
- Goldberg G.K.
- Ferguson B.M.
- Schoeneck M.W.
- Libardo M.D.
- Mayeux S.E.
- Shrestha A.
- Bogardus K.A.
- Hammer J.
- Pryshchep S.
- Lehman H.K.
- McCormick M.L.
- Blazyk J.
- Angeles-Boza A.M.
- Fu R.
- Cotten M.L.
- Perrin Jr., B.S.
- Tian Y.
- Fu R.
- Grant C.V.
- Chekmenev E.Y.
- Wieczorek W.E.
- Dao A.E.
- Hayden R.M.
- Burzynski C.M.
- Venable R.M.
- Sharma M.
- Opella S.J.
- Pastor R.W.
- Cotten M.L.
Results
Permeabilization assays of POPC/Chol vesicles in the presence of P1 and P3
- Mihailescu M.
- Sorci M.
- Seckute J.
- Silin V.I.
- Hammer J.
- Perrin Jr., B.S.
- Hernandez J.I.
- Smajic N.
- Shrestha A.
- Bogardus K.A.
- Greenwood A.I.
- Fu R.
- Blazyk J.
- Pastor R.W.
- Nicholson L.K.
- Belfort G.
- Cotten M.L.
- Mihailescu M.
- Sorci M.
- Seckute J.
- Silin V.I.
- Hammer J.
- Perrin Jr., B.S.
- Hernandez J.I.
- Smajic N.
- Shrestha A.
- Bogardus K.A.
- Greenwood A.I.
- Fu R.
- Blazyk J.
- Pastor R.W.
- Nicholson L.K.
- Belfort G.
- Cotten M.L.
- Hayden R.M.
- Goldberg G.K.
- Ferguson B.M.
- Schoeneck M.W.
- Libardo M.D.
- Mayeux S.E.
- Shrestha A.
- Bogardus K.A.
- Hammer J.
- Pryshchep S.
- Lehman H.K.
- McCormick M.L.
- Blazyk J.
- Angeles-Boza A.M.
- Fu R.
- Cotten M.L.

High-resolution structures of P1 and P3 in POPC/Chol
- Perrin Jr., B.S.
- Tian Y.
- Fu R.
- Grant C.V.
- Chekmenev E.Y.
- Wieczorek W.E.
- Dao A.E.
- Hayden R.M.
- Burzynski C.M.
- Venable R.M.
- Sharma M.
- Opella S.J.
- Pastor R.W.
- Cotten M.L.
- Perrin Jr., B.S.
- Tian Y.
- Fu R.
- Grant C.V.
- Chekmenev E.Y.
- Wieczorek W.E.
- Dao A.E.
- Hayden R.M.
- Burzynski C.M.
- Venable R.M.
- Sharma M.
- Opella S.J.
- Pastor R.W.
- Cotten M.L.
- Perrin Jr., B.S.
- Tian Y.
- Fu R.
- Grant C.V.
- Chekmenev E.Y.
- Wieczorek W.E.
- Dao A.E.
- Hayden R.M.
- Burzynski C.M.
- Venable R.M.
- Sharma M.
- Opella S.J.
- Pastor R.W.
- Cotten M.L.

- Perrin Jr., B.S.
- Tian Y.
- Fu R.
- Grant C.V.
- Chekmenev E.Y.
- Wieczorek W.E.
- Dao A.E.
- Hayden R.M.
- Burzynski C.M.
- Venable R.M.
- Sharma M.
- Opella S.J.
- Pastor R.W.
- Cotten M.L.
- Perrin Jr., B.S.
- Tian Y.
- Fu R.
- Grant C.V.
- Chekmenev E.Y.
- Wieczorek W.E.
- Dao A.E.
- Hayden R.M.
- Burzynski C.M.
- Venable R.M.
- Sharma M.
- Opella S.J.
- Pastor R.W.
- Cotten M.L.
- Perrin Jr., B.S.
- Tian Y.
- Fu R.
- Grant C.V.
- Chekmenev E.Y.
- Wieczorek W.E.
- Dao A.E.
- Hayden R.M.
- Burzynski C.M.
- Venable R.M.
- Sharma M.
- Opella S.J.
- Pastor R.W.
- Cotten M.L.
- Perrin Jr., B.S.
- Tian Y.
- Fu R.
- Grant C.V.
- Chekmenev E.Y.
- Wieczorek W.E.
- Dao A.E.
- Hayden R.M.
- Burzynski C.M.
- Venable R.M.
- Sharma M.
- Opella S.J.
- Pastor R.W.
- Cotten M.L.
X-ray diffraction studies of POPC/Chol in the presence of P1 and P3

- Mihailescu M.
- Sorci M.
- Seckute J.
- Silin V.I.
- Hammer J.
- Perrin Jr., B.S.
- Hernandez J.I.
- Smajic N.
- Shrestha A.
- Bogardus K.A.
- Greenwood A.I.
- Fu R.
- Blazyk J.
- Pastor R.W.
- Nicholson L.K.
- Belfort G.
- Cotten M.L.
Fluorescence microscopy of P1 and P3 in raft-forming mixtures

X-ray diffraction studies of POPE/POPG mixtures in the presence of P1 and P3

Differential scanning calorimetry of POPE/POPG and diPoPE in the presence of P1 and P3

Neutron diffraction profiles of diPoPE bilayers with deuterated P1
- Mihailescu M.
- Sorci M.
- Seckute J.
- Silin V.I.
- Hammer J.
- Perrin Jr., B.S.
- Hernandez J.I.
- Smajic N.
- Shrestha A.
- Bogardus K.A.
- Greenwood A.I.
- Fu R.
- Blazyk J.
- Pastor R.W.
- Nicholson L.K.
- Belfort G.
- Cotten M.L.
- Mihailescu M.
- Sorci M.
- Seckute J.
- Silin V.I.
- Hammer J.
- Perrin Jr., B.S.
- Hernandez J.I.
- Smajic N.
- Shrestha A.
- Bogardus K.A.
- Greenwood A.I.
- Fu R.
- Blazyk J.
- Pastor R.W.
- Nicholson L.K.
- Belfort G.
- Cotten M.L.

Patch-clamp experiments using E. coli spheroplasts in the presence of P1 and P3

Discussion
- Mihailescu M.
- Sorci M.
- Seckute J.
- Silin V.I.
- Hammer J.
- Perrin Jr., B.S.
- Hernandez J.I.
- Smajic N.
- Shrestha A.
- Bogardus K.A.
- Greenwood A.I.
- Fu R.
- Blazyk J.
- Pastor R.W.
- Nicholson L.K.
- Belfort G.
- Cotten M.L.
- Perrin Jr., B.S.
- Tian Y.
- Fu R.
- Grant C.V.
- Chekmenev E.Y.
- Wieczorek W.E.
- Dao A.E.
- Hayden R.M.
- Burzynski C.M.
- Venable R.M.
- Sharma M.
- Opella S.J.
- Pastor R.W.
- Cotten M.L.
- Mihailescu M.
- Sorci M.
- Seckute J.
- Silin V.I.
- Hammer J.
- Perrin Jr., B.S.
- Hernandez J.I.
- Smajic N.
- Shrestha A.
- Bogardus K.A.
- Greenwood A.I.
- Fu R.
- Blazyk J.
- Pastor R.W.
- Nicholson L.K.
- Belfort G.
- Cotten M.L.
- Mihailescu M.
- Sorci M.
- Seckute J.
- Silin V.I.
- Hammer J.
- Perrin Jr., B.S.
- Hernandez J.I.
- Smajic N.
- Shrestha A.
- Bogardus K.A.
- Greenwood A.I.
- Fu R.
- Blazyk J.
- Pastor R.W.
- Nicholson L.K.
- Belfort G.
- Cotten M.L.
- Hayden R.M.
- Goldberg G.K.
- Ferguson B.M.
- Schoeneck M.W.
- Libardo M.D.
- Mayeux S.E.
- Shrestha A.
- Bogardus K.A.
- Hammer J.
- Pryshchep S.
- Lehman H.K.
- McCormick M.L.
- Blazyk J.
- Angeles-Boza A.M.
- Fu R.
- Cotten M.L.
Experimental procedures
Materials
- Perrin Jr., B.S.
- Tian Y.
- Fu R.
- Grant C.V.
- Chekmenev E.Y.
- Wieczorek W.E.
- Dao A.E.
- Hayden R.M.
- Burzynski C.M.
- Venable R.M.
- Sharma M.
- Opella S.J.
- Pastor R.W.
- Cotten M.L.
Permeabilization assays
- Hayden R.M.
- Goldberg G.K.
- Ferguson B.M.
- Schoeneck M.W.
- Libardo M.D.
- Mayeux S.E.
- Shrestha A.
- Bogardus K.A.
- Hammer J.
- Pryshchep S.
- Lehman H.K.
- McCormick M.L.
- Blazyk J.
- Angeles-Boza A.M.
- Fu R.
- Cotten M.L.
15N-oriented solid-state NMR
- Perrin Jr., B.S.
- Tian Y.
- Fu R.
- Grant C.V.
- Chekmenev E.Y.
- Wieczorek W.E.
- Dao A.E.
- Hayden R.M.
- Burzynski C.M.
- Venable R.M.
- Sharma M.
- Opella S.J.
- Pastor R.W.
- Cotten M.L.
- Perrin Jr., B.S.
- Tian Y.
- Fu R.
- Grant C.V.
- Chekmenev E.Y.
- Wieczorek W.E.
- Dao A.E.
- Hayden R.M.
- Burzynski C.M.
- Venable R.M.
- Sharma M.
- Opella S.J.
- Pastor R.W.
- Cotten M.L.
Structure determination
Neutron and X-ray diffraction
Fluorescence microscopy
Differential scanning calorimetry
Patch-clamp measurements on giant E. coli spheroplasts
Author contributions
Acknowledgments
Supplementary Material
References
- Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass.J. Biol. Chem. 2002; 277 (11739390): 5030-5039
- Evidence for widespread distribution of piscidin antimicrobial peptides in teleost fish.Dis. Aquat. Organ. 2006; 72 (17190202): 241-252
- Peptide antibiotics in mast cells of fish.Nature. 2001; 414 (11713517): 268-269
- Database-guided discovery of potent peptides to combat HIV-1 or superbugs.Pharmaceuticals. 2013; 6 (24276259): 728-758
- Piscidin-1, an antimicrobial peptide from fish (hybrid striped bass Morone saxatilis x M. chrysops), induces apoptotic and necrotic Activity in HT1080 cells.Zoolog. Sci. 2012; 29 (22559967): 327-332
- The effect of adding histidine on biological activity and stability of Pc-pis from Pseudosciaena crocea.PLoS ONE. 2013; 8 (24349477): e83268
- The antimicrobial peptides piscidins are stored in the granules of professional phagocytic granulocytes of fish and are delivered to the bacteria-containing phagosome upon phagocytosis.Dev. Comp. Immunol. 2008; 32 (18582499): 1531-1538
- Structure and function in antimicrobial piscidins: histidine position, directionality of membrane insertion, and pH-dependent permeabilization.J. Am. Chem. Soc. 2019; 141 (31144503): 9837-9853
- All-d amino acid-containing channel-forming antibiotic peptides.Proc. Natl. Acad. Sci. U.S.A. 1990; 87 (1693777): 4761-4765
- Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers.Nature. 2004; 430 (15241420): 235-240
- The use of the antimicrobial peptide piscidin (PCD)-1 as a novel anti-nociceptive agent.Biomaterials. 2015; 53 (25890701): 1-11
- Copper regulates the interactions of antimicrobial piscidin peptides from fish mast cells with formyl peptide receptors and heparin.J. Biol. Chem. 2018; 293 (30158246): 15381-15396
- Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes.J. Biol. Chem. 2005; 280 (16043484): 33960-33967
- Membrane lipids: where they are and how they behave.Nat. Rev. Mol. Cell. Biol. 2008; 9 (18216768): 112-124
- Bacterial membrane lipids in the action of antimicrobial agents.J. Peptide Sci. 2011; 17 (21480436): 298-305
- Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2.Biochemistry. 1995; 34 (7533538): 3423-3429
- Melittin-induced leakage from phosphatidylcholine vesicles is modulated by cholesterol: a property used for membrane targeting.Eur. Biophys. J. 1997; 25: 201-210
- Interaction of wasp venom mastoparan with biomembranes.Biochim. Biophys. Acta. 1990; 1027 (2204429): 185-190
- Functional rafts in cell membranes.Nature. 1997; 387 (9177342): 569-572
- Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D.Nat. Commun. 2016; 7 (27976674): 13873
- Studies on the mechanism of general anesthesia.bioRxiv. 2018;
- Xenon and other volatile anesthetics change domain structure in model lipid raft membranes.J. Phys. Chem. B. 2013; 117 (24299622): 16141-16147
- Lateral pressures in cell membranes: A mechanism for modulation of protein function.J. Phys. Chem. B. 1997; 101: 1723-1725
- Bacterial membranes: structure, domains, and function.Annu. Rev. Microbiol. 2017; 71 (28697671): 519-538
- Complementary effects of host-defense peptides piscidin 1 and piscidin 3 on DNA and lipid membranes: biophysical insights into contrasting biological activities.J. Phys. Chem. B. 2015; 119 (26569483): 15235-15246
- High-resolution structures and orientations of antimicrobial peptides piscidin 1 and piscidin 3 in fluid bilayers reveal tilting, kinking, and bilayer immersion.J. Am. Chem. Soc. 2014; 136 (24410116): 3491-3504
- Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?.Nat. Rev. Microbiol. 2005; 3 (15703760): 238-250
- Mode of action of membrane active antimicrobial peptides.Biopolymers. 2002; 66 (12491537): 236-248
- Mechanistic landscape of membrane-permeabilizing peptides.Chem. Rev. 2019; 119 (30624911): 6040-6085
- Action of antimicrobial peptides on bacterial and lipid membranes: a direct comparison.Biophys. J. 2017; 112 (28445757): 1663-1672
- Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37.Proc. Natl. Acad. Sci. U.S.A. 2011; 108 (21464330): E77-E81
- Effect of lipid headgroup composition on the interaction between melittin and lipid bilayers.J. Colloid Interface Sci. 2007; 311 (17383670): 59-69
- APD2: the updated antimicrobial peptide database and its application in peptide design.Nucleic Acids Res. 2009; 37 (18957441): D933-D937
- Structure–function relationships of antimicrobial peptides.Biochem. Cell Biol. 1998; 76 (9923692): 235-246
- NMR structural insights on the function of antimicrobial peptides.Abstracts–Papers of the American Chemical Society. 2010; 240
- Solid-state NMR investigation of protein and polypeptide structure.Annu. Rev. Biophys. Biomol. Struct. 1999; 28 (10410802): 235-268
- Structure determination of membrane proteins by NMR spectroscopy.Chem. Rev. 2004; 104 (15303829): 3587-3606
- The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy.Chem. Phys. Lipids. 2012; 165 (22366307): 282-301
- Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR.Protein Sci. 2011; 20 (21344534): 641-655
- Membrane interactions and biological activity of antimicrobial peptides from Australian scorpion.Biochim. Biophys. Acta. 2014; 1838 (24200946): 2140-2148
- High resolution heteronuclear correlation NMR spectroscopy of an antimicrobial peptide in aligned lipid bilayers: peptide–water interactions at the water–bilayer interface.J. Am. Chem. Soc. 2009; 131 (19621928): 10830-10831
- The curvature induction of surface-bound antimicrobial peptides piscidin 1 and piscidin 3 varies with lipid chain length.J. Membr. Biol. 2015; 248 (25292264): 455-467
- Phospholipid/cholesterol model membranes: formation of cholesterol crystallites.Biochim. Biophys. Acta. 2003; 1610 (12648773): 187-197
- Membrane thinning caused by magainin 2.Biochemistry. 1995; 34 (8527451): 16764-16769
- Structure, location, and lipid perturbations of melittin at the membrane interface.Biophys. J. 2001; 80 (11159447): 801-811
- Structural interactions of a voltage sensor toxin with lipid membranes.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (25453087, E70): E5463
- Acyl-chain methyl distributions of liquid-ordered and -disordered membranes.Biophys. J. 2011; 100 (21402027): 1455-1462
- Structural-analysis of hydrated egg lecithin and cholesterol bilayers. 2. Neutron-diffraction.J. Mol. Biol. 1976; 100 (943549): 359-378
- Effects of membrane charge and order on membrane binding of the retroviral structural protein Gag.J. Virol. 2016; 90 (27512076): 9518-9532
- Bacterial membrane lipids: diversity in structures and pathways.FEMS Microbiol. Rev. 2016; 40 (25862689): 133-159
- A model of hydrogen bond formation in phosphatidylethanolamine bilayers.Biochim. Biophys. Acta. 1998; 1368 (9459606): 289-305
- Stability of lyotropic phases with curved interfaces.J. Phys. Chem. 1989; 93: 7562-7570
- Physical principles of membrane organization.Q. Rev. Biophys. 1980; 13 (7015403): 121-200
- DIfferential scanning calorimetry and x-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems.Biochim. Biophys. Acta. 1999; 1462 (10590306): 141-156
- Probing the “charge cluster mechanism” in amphipathic helical cationic antimicrobial peptides.Biochemistry. 2010; 49 (20387900): 4076-4084
- Relationship of membrane curvature to the formation of pores by magainin 2.Biochemistry. 1998; 37 (9718308): 11856-11863
- Pore hydration states of KcsA potassium channels in membranes.J. Biol. Chem. 2015; 290 (26370089): 26765-26775
- A direct method for determination of membrane electron density profiles on an absolute scale.Nature. 1978; 276 (723939): 530-532
- Molecular structures of fluid phosphatidylethanolamine bilayers obtained from simulation–to–experiment comparisons and experimental scattering density profiles.J. Phys. Chem. B. 2015; 119 (25436970): 1947-1956
- Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration.Biophys. J. 1998; 74 (9591668): 2419-2433
- Mechanism of the lamellar/inverse hexagonal phase transition examined by high resolution x-ray diffraction.Biophys. J. 2003; 84 (12719241): 3111-3122
- Mechanosensitive channels in microbes.Annu. Rev. Microbiol. 2010; 64 (20825352): 313-329
- Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL.J. Gen. Physiol. 1999; 113 (10102934): 525-540
- Membrane-active peptides and the clustering of anionic lipids.Biophys. J. 2012; 103 (22853904): 265-274
- Solution structure and cell selectivity of piscidin 1 and its analogues.Biochemistry. 2007; 46 (17328560): 3653-3663
- Structure and mechanism of action of the antimicrobial peptide piscidin.Biochemistry. 2007; 46 (17253775): 1771-1778
- Experimentally determined hydrophobicity scale for proteins at membrane interfaces.Nat. Struct. Biol. 1996; 3 (8836100): 842-848
- Melittin-lipid bilayer interactions and the role of cholesterol.Biophys. J. 2008; 95 (18658211): 4324-4336
- Membrane lipid composition and the interaction of pardaxin: the role of cholesterol.Protein Pept. Lett. 2006; 13 (16454662): 1-5
- Permeabilization of raft-containing lipid vesicles by δ-lysin: a mechanism for cell sensitivity to cytotoxic peptides.Biochemistry. 2005; 44 (15996108): 9538-9544
- Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes?.Biochim. Biophys. Acta. 2012; 1818 (22885355): 3019-3024
- The role of cholesterol in driving IAPP-membrane interactions.Biophys. J. 2016; 111 (27410742): 140-151
- Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells.J. Biol. Chem. 2016; 291 (26663081): 3658-3667
- MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain.Biophys. J. 2003; 84 (12719236): 3052-3060
- Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37.Biochemistry. 2003; 42 (12767238): 6545-6558
- Effects of GsMTx4 on bacterial mechanosensitive channels in inside-out patches from giant spheroplasts.Biophys. J. 2010; 99 (21044584): 2870-2878
- Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating.Nat. Struct. Biol. 2002; 9 (12172537): 696-703
- Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK.J. Biol. Chem. 2000; 275 (10744694): 10128-10133
- The “dashpot” mechanism of stretch-dependent gating in MscS.J. Gen. Physiol. 2005; 125 (15657299): 143-154
- Gating of the large mechanosensitive channel in situ: estimation of the spatial scale of the transition from channel population responses.Biophys. J. 2004; 86 (15111402): 2846-2861
- Is the mechanism of general-anesthesia related to lipid-membrane spontaneous curvature.Ann. N. Y. Acad. Sci. 1991; 625 (2058916): 685-697
- Biochemical changes in tumor tissues of oral cancer patients.Clin. Biochem. 2003; 36 (12554062): 61-65
- Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents.Am. J. Pathol. 2006; 168 (16565487): 1107-1118
- Cholesterol and prostate cancer.Curr. Opin. Pharmacol. 2012; 12 (22824430): 751-759
- High-field NMR studies of molecular recognition and structure-function relationships in antimicrobial piscidins at the water-lipid bilayer interface.J. Am. Chem. Soc. 2006; 128 (16620079): 5308-5309
- Using Low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz.J. Magn. Reson. 2007; 185 (17174130): 77-93
- The Xplor-NIH NMR molecular structure determination package.J. Magn. Reson. 2003; 160 (12565051): 65-73
- AssignFit: a program for simultaneous assignment and structure refinement from solid-state NMR spectra.J. Magn. Reson. 2012; 214 (22036904): 42-50
- NMRbox: a resource for biomolecular NMR computation.Biophys. J. 2017; 112 (28445744): 1529-1534
- Structure of the chemokine receptor CXCR1 in phospholipid bilayers.Nature. 2012; 491 (23086146): 779-783
- A practical implicit solvent potential for NMR structure calculation.J. Magn. Reson. 2014; 243 (24747742): 54-64
- A practical implicit membrane potential for NMR structure calculations of membrane proteins.Biophys. J. 2015; 109 (26244739): 574-585
- Structure of nerve myelin membrane–proof of low-resolution profile.J. Mol. Biol. 1971; 56 (5573764): 35-52
- Membrane Spectroscopy.in: Grell E. Springer-Verlag, Berlin1981: 437-487
- Phase studies of model biomembranes: complex behavior of DSPC/DOPC/cholesterol.Biochim. Biophys. Acta. 2007; 1768 (17825247): 2764-2776
- Phase diagram of a 4-component lipid mixture: DSPC/DOPC/POPC/chol.Biochim. Biophys. Acta. 2013; 1828 (23747294): 2204-2214
- Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity.EMBO J. 1999; 18 (10202137): 1730-1737
- Characterization of three novel mechanosensitive channel activities in Escherichia coli.Channels (Austin). 2012; 6 (22874652): 272-281
- Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. I. Scaling of neutron data and the distribution of double-bonds and water.Biophys. J. 1991; 60 (1932548): 568-576
Article info
Publication history
Footnotes
This work was supported in part by National Science Foundation Grants MCB-1716608 (to M. L. C.) and 1714164 (to M. M.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains Figs. S1–S10, Tables S1–S6, and supporting Refs. 1–4.
The atomic coordinates and structure factors (codes 6PF0 and 6PEZ) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy