Introduction
Results
MPIase is involved in both Sec-independent and Sec-dependent integration into INV


Development of a reconstitution system in which disordered spontaneous integration had been precluded

YidC accelerates MPIase-dependent integration of membrane proteins
Effects of YidC mutants on MPIase-dependent integrations

Discussion

Experimental procedures
Materials
Reconstitution of (proteo)liposomes
Assaying of membrane protein integration
Miscellaneous
Author contributions
Acknowledgments
Supplementary Material
References
- Assembly of bacterial inner membrane proteins.Annu. Rev. Biochem. 2011; 80 (21275640): 161-187
- The Sec translocase.Biochim. Biophys. Acta. 2011; 1808 (20801097): 851-865
- The Sec translocon mediated protein transport in prokaryotes and eukaryotes.Mol. Membr. Biol. 2014; 31 (24762201): 58-84
- Relationship between glycolipozyme MPIase and components comprising the protein transport machinery.Med. Res. Arch. 2015; 2: 11
- Glycolipozyme membrane protein integrase (MPIase): Recent data.Biomol. Concepts. 2014; 5 (25367622): 429-438
- M13 procoat inserts into liposomes in the absence of other membrane proteins.J. Biol. Chem. 1985; 260 (3902814): 13281-13285
- A derivative of lipid A is involved in signal recognition particle/SecYEG-dependent and -independent membrane integrations.J. Biol. Chem. 2006; 281 (17008318): 35667-35676
- Diacylglycerol specifically blocks spontaneous integration of membrane proteins and allows detection of a factor-assisted integration.J. Biol. Chem. 2008; 283 (18614537): 24489-24496
- YidC mediates membrane protein insertion in bacteria.Nature. 2000; 406 (10949305): 637-641
- YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase.EMBO J. 2000; 19 (10675323): 542-549
- Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria.Mol. Membr. Biol. 2005; 22 (16092528): 101-111
- F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis.J. Cell Biol. 2004; 165 (15096523): 213-222
- M13 procoat protein insertion into YidC and SecYEG proteoliposomes and liposomes.J. Mol. Biol. 2011; 406 (21195087): 362-370
- Escherichia coli YidC is a membrane insertase for Sec-independent proteins.EMBO J. 2004; 23 (14739936): 294-301
- YidC/Alb3/Oxa1 family of insertases.J. Biol. Chem. 2015; 290 (25947384): 14866-14874
- The conserved role of YidC in membrane protein biogenesis.Microbiol. Spectr. 2019; 7 (PSIB-0014–2018) (30761982)
- YidC-mediated membrane insertion.FEMS Microbiol. Lett. 2018; 365 (29800285): fny106
- A novel complete reconstitution system for membrane integration of the simplest membrane protein.Biochem. Biophys. Res. Commun. 2010; 394 (20230783): 733-736
- MPIase is a glycolipozyme essential for membrane protein integration.Nat. Commun. 2012; 3 (23232390): 1260
- Syntheses and activities of the functional structures of a glycolipid essential for membrane protein integration.ACS Chem. Biol. 2018; 13 (30064209): 2719-2727
- Alteration of membrane physicochemical properties by two factors for membrane protein integration.Biophys. J. 2019; 117 (31164197): 99-110
- Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle.Mol. Biol. Cell. 2012; 23 (22160593): 464-479
- Glycolipozyme MPIase is essential for topology inversion of SecG during preprotein translocation.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (23716687): 9734-9739
- CdsA is involved in biosynthesis of glycolipid MPIase essential for membrane protein integration in vivo.Sci. Rep. 2019; 9 (30718729): 1372
- YnbB is a CdsA paralogue dedicated to biosynthesis of glycolipid MPIase involved in membrane protein integration.Biochem. Biophys. Res. Commun. 2019; 510 (30739787): 636-642
- Increased expression of the bacterial glycolipid MPIase is required for efficient protein translocation across membranes in cold conditions.J. Biol. Chem. 2019; 294 (30936205): 8403-8411
- Two-step induction of cdsA promoters leads to up-regulation of the glycolipid MPIase at cold temperature.FEBS Lett. 2019; 593 (31127859): 1711-1723
- Membrane insertion of F0 c subunit of F0F1 ATPase depends on glycolipozyme MPIase and is stimulated by YidC.Biochem. Biophys. Res. Commun. 2017; 487 (28431927): 477-482
- Structural basis of Sec-independent membrane protein insertion by YidC.Nature. 2014; 509 (24739968): 516-520
- Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase.Sci. Rep. 2014; 4 (25466392): 7299
- 2.8-Å crystal structure of Escherichia coli YidC revealing all core regions, including flexible C2 loop.Biochem. Biophys. Res. Commun. 2018; 505 (30241934): 141-145
- Cell-free translation reconstituted with purified components.Nat. Biotechnol. 2001; 19 (11479568): 751-755
- In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli.Mol. Biol. Cell. 1999; 10 (10397756): 2163-2173
- Hydrophobic forces drive spontaneous membrane insertion of the bacteriophage Pf3 coat protein without topological control.EMBO J. 1999; 18 (10562542): 6299-6306
- Dissecting the translocase and integrase functions of the Escherichia coli SecYEG translocon.J. Cell Biol. 2000; 150 (10931878): 689-694
- Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein insertion.J. Biol. Chem. 2002; 277 (11751917): 7670-7675
- Diacylglycerol partitioning and mixing in detergent micelles: Relevance to enzyme kinetics.Biochim. Biophys. Acta. 1997; 1348 (9366244): 273-286
- Crystal structures of SecYEG in lipidic cubic phase elucidate a precise resting and a peptide-bound state.Cell Rep. 2015; 13 (26586438): 1561-1568
- Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule.J. Mol. Biol. 1992; 225 (1593632): 487-494
- Function of YidC for the insertion of M13 procoat protein in Escherichia coli: Translocation of mutants that show differences in their membrane potential dependence and Sec requirement.J. Biol. Chem. 2001; 276 (11457858): 34847-34852
- Assisted and unassisted protein insertion into liposomes.Biophys. J. 2017; 113 (28454841): 1187-1193
- SecY is an indispensable component of the protein secretory machinery of Escherichia coli.Biochim. Biophys. Acta. 1991; 1065 (2043656): 89-97
- Separate analysis of twin-arginine translocation (Tat)-specific membrane binding and translocation in Escherichia coli.J. Biol. Chem. 2002; 277 (11923313): 20499-20503
- Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu.J. Mol. Biol. 1976; 104 (781293): 541-555
- One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery.EMBO J. 1991; 10 (2050112): 1749-1757
- Ligand crowding at a nascent signal sequence.J. Cell Biol. 2003; 163 (14530384): 35-44
- The integration of YidC into the cytoplasmic membrane of Escherichia coli requires the signal recognition particle, SecA and SecYEG.J. Biol. Chem. 2002; 277 (11777926): 5715-5718
- Development of a minimal cell-free translation system for the synthesis of presecretory and integral membrane proteins.Biotechnol. Prog. 2005; 21 (16080708): 1243-1251
- Reconstitution of translocation activity for secretory proteins from solubilized components of Escherichia coli.Eur. J. Biochem. 1990; 192 (2170124): 583-589
- Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature. 1970; 227 (5432063): 680-685
- Protein measurement with the Folin phenol reagent.J. Biol. Chem. 1951; 193 (14907713): 265-275
- The carboxyl-terminal region of SecE interacts with SecY and is functional in the reconstitution of protein translocation activity in Escherichia coli.J. Biol. Chem. 1992; 267 (1551922): 7170-7176
Article info
Publication history
Footnotes
This study was supported by Japan Society for the Promotion of Science Grants-in-Aid 18J21847 (to H. N.); 13J06852 (to H. T. M.); 18H02405 and 18KK0197 (to T. T.); 16H06156 (to Y. K.); 15KT0073, 16H01374, 16K15083, 17H02209, and 18KK0197 (to K. N.). The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Figs. S1–S10.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy