Introduction
- Cortés A.
- Huertas D.
- Fanti L.
- Pimpinelli S.
- Marsellach F.X.
- Piña B.
- Azorín F.
Results
Vgl1 Is Required for Heterochromatin Integrity

Vgl1 binds to pericentromeric heterochromatin and regulates H3K9 methylation and Swi6 recruitment
- Cortés A.
- Huertas D.
- Fanti L.
- Pimpinelli S.
- Marsellach F.X.
- Piña B.
- Azorín F.


Vgl1 regulates Clr4 binding to pericentromeric heterochromatin

Vgl1 is required for integrity of telomeric heterochromatin

Vgl1 interacts with H3K9 histone methyltransferase Clr4


Vgl1 relies on direct RNA binding for recruitment to centromeric heterochromatin

Discussion
- Cortés A.
- Huertas D.
- Fanti L.
- Pimpinelli S.
- Marsellach F.X.
- Piña B.
- Azorín F.
- Cortés A.
- Huertas D.
- Fanti L.
- Pimpinelli S.
- Marsellach F.X.
- Piña B.
- Azorín F.

Materials and methods
Yeast strains
- Bähler J.
- Wu J.Q.
- Longtine M.S.
- Shah N.G.
- McKenzie 3rd, A.
- Steever A.B.
- Wach A.
- Philippsen P.
- Pringle J.R.
Strain no. | Strain | Genotype | Source |
---|---|---|---|
1. | SPY137 | h + otr1R(SphI)::ura4 + ura4-DS/E leu1–32 ade6-M210 | 41 |
2. | SPY815 | h + otr1R(SphI)::ura4 + ura4-DS/E leu1–32 ade6-M210 clr4Δ::KanMX | 41 |
3. | AB099 | h + otr1R(SphI)::ura4 + ura4-DS/E leu1–32 ade6-M210 vgl1Δ::KanMX | This study |
4. | SPY816 | h + otr1R(SphI)::ura4 + ura4-DS/E leu1–32 ade6-M210 swi6Δ::KanMX | 41 |
5. | FY511 | h90 mat3-M::ura4 ade6–216 leu 1–32 ura4-D18 | 39 |
6. | AB141 | h + ade6–210 leu 1–32 ura4-D18 otr 1R (dg-glu) Sph::ade6 vgl Δ::KanMX | This study |
7. | FY 1180 | h + ade6–210 leu 1–32 ura4-D18 otr 1R (dg-glu) Sph::ade6 | 39 |
8. | AB138 | h + Nmyc-clr4 ade6–210 leu1–32 ura4D18 otr1RSph::ade6 Vgl1::HA KanMX | This study |
9. | FY 8216 | h + myc3::ago1 leu1–32 ade6–704 ura4-D18 | 39 |
10. | AB140 | h + myc3::ago1 leu1–32 ade6–704 ura4-D18 vgl Δ::KanMX | This study |
11. | FY 8635 | h + Nmyc-clr4 ade6–210 leu1–32 ura4D18 otr1RSph::ade6 | 39 |
12. | FY A2406 | h + rdp1-HA –PFAMX6KAN ade6–210 otr (Sph1):ade6 + | 39 |
13. | SPM1079 | h90ade6-M216 leu1–32 ura4-D18 clr4::5XFLAG-clr4 | 39 |
14. | AB139 | h90 vgl1 Δ::KanRade6-M216 leu1–32 ura4-D18 clr4::5XFLAG-clr4 | This study |
15. | BG-H4839 | vgl1 Δ::KanMX4 ade-M216 ura4-D18 leu1–32 | Bioneer |
16. | FY8539 | h + otr1R(SphI):ura4 + ura4-DS/E leu1–32 ade6-M210 dcr1Δ::KanMX | 39 |
17. | AB140 | h + Vgl1-HA-HygR otr1R(SphI):ura4 + ura4-DS/E leu1–32 ade6-M210 dcr1Δ::KanMX | This study |
Quantitative RT-PCR
ChIP assay
Silencing assays
Immunoprecipitations
Model generation and validation
Protein–protein docking
Interaction profile of Vgl1 and Clr4
ChIP with an RNase step
GST pulldown assay
Author contributions
Acknowledgments
References
- On TADs and LADs, spatial control over gene expression.Trends Genet. 2016; 32 (10.1016/j.tig.2016.05.004, 27312344): 485-495
- The role of chromatin during transcription.Cell. 2007; 128 (10.1016/j.cell.2007.01.015, 17320508): 707-719
- Histone core modifications regulating nucleosome structure and dynamics.Nat. Rev. Mol. Cell Biol. 2014; 15 (10.1038/nrm3890, 25315270): 703-708
- Histone modifications in response to DNA damage.Mutat. Res. 2007; 618 (10.1016/j.mrfmmm.2006.09.009, 17306843): 81-90
- The many faces of histone H3K79 methylation.Mutat Res Rev Mutat Res. 2016; 768 (10.1016/j.mrrev.2016.03.005, 27234562): 46-52
- Mechanisms of heterochromatin subnuclear localization.Trends Biochem. Sci. 2013; 38 (10.1016/j.tibs.2013.04.004, 23746617): 356-363
- Spatial segregation of heterochromatin, uncovering functionality in a multicellular organism.Nucleus. 2016; 7 (10.1080/19491034.2016.1187354, 27187571): 301-307
- Histones and histone modifications in perinuclear chromatin anchoring from yeast to man.EMBO Rep. 2016; 17 (10.15252/embr.201541809, 26792937): 139-155
- The nuclear envelope in genome organization, expression and stability.Nat. Rev. Mol. Cell Biol. 2010; 5 (10.1038/nrm1360, 15071556): 317-328
- Regulation of transcription by long noncoding RNAs.Annu. Rev. Genet. 2014; 48 (10.1146/annurev-genet-120213-092323, 25251851): 433-455
- RNA-mediated epigenetic regulation of gene expression.Nat. Rev. Genet. 2015; 16 (10.1038/nrg3863, 25554358): 71-84
- RNA interference (RNAi) in the nucleus roles for small RNA in transcription, epigenetics and beyond.Nat. Rev. Genet. 2013; 14 (10.1038/nrg3355, 23329111): 100-112
- Small silencing RNAs: an expanding universe.Nat. Rev. Genet. 2009; 10 (10.1038/nrg2504, 19148191): 94-108
- Epigenetic regulation of chromatin states in Schizosaccharomyces pombe.Cold Spring Harb. Perspect. Biol. 2015; 7 (10.1101/cshperspect.a018770, 26134317): a018770
- Centromeric heterochromatin the primordial segregation machine.Annu. Rev. Genet. 2014; 48 (10.1146/annurev-genet-120213-092033, 25251850): 457-484
- Chromosome domain architecture and dynamic organization of the fission yeast genome.FEBS Lett. 2015; 7: 2975-2986
- Heterochromatin revisited.Nat. Rev. Genet. 2007; 8 (10.1038/nrg2008, 17173056): 35-46
- RNAi and heterochromatin assembly.Cold Spring Harb. Perspect. Biol. 2015; 7 (10.1101/cshperspect.a019323, 26238358): a019323
- Small RNAs in transcriptional gene silencing and genome defence.Nature. 2009; 457 (10.1038/nature07756, 19158787): 413-420
- Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo-domain protein Swi6p and impair centromere function.J. Cell Sci. 1996; 109 (8937982): 2637-2648
- RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production.Proc. Natl. Acad. Sci. U.S.A. 2005; 102 (10.1073/pnas.0407641102, 15615848): 152-157
- Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome.Nat. Genet. 2005; 37 (10.1038/ng1602, 15976807): 809-819
- RNAi-mediated targeting of heterochromatin by the RITS complex.Science. 2004; 303 (10.1126/science.1093686, 14704433): 672-676
- RNA interference and heterochromatin assembly.Cold Spring Harb. Perspect. Biol. 2011; 3 (10.1101/cshperspect.a003731, 21441597): a003731
- Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing.Cell. 2006; 125 (10.1016/j.cell.2006.04.025, 16751098): 873-886
- Two different argonaute complexes are required for siRNA generation and heterochromatin assembly in fission yeast.Nat Struct Mol Biol. 2007; 14 (10.1038/nsmb1211, 17310250): 200-207
- Establishment and maintenance of a heterochromatin domain.Science. 2002; 297 (10.1126/science.1076466, 12215653): 2232-2237
- The methyltransferase activity of Clr4Suv39h triggers RNAi independently of histone H3K9 methylation.Mol Cell. 2010; 39 (10.1016/j.molcel.2010.07.017, 20705239): 360-372
- Regulation of chromatin structure by site-specific histone H3 methyltransferases.Nature. 2000; 406 (10.1038/35020506, 10949293): 593-599
- Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly.Science. 2001; 292 (10.1126/science.1060118, 11283354): 110-113
- The chromodomain protein Swi6: a key component at fission yeast centromeres.Science. 1995; 269 (10.1126/science.7660126, 7660126): 1429-1431
- Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo-domain.Nature. 2001; 410 (10.1038/35065138, 11242054): 120-124
- siRNA-mediated heterochromatin establishment requires HP1 and is associated with antisense transcription.Mol. Cell. 2008; 31 (10.1016/j.molcel.2008.07.003, 18657501): 178-189
- A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast.EMBO J. 2004; 23 (10.1038/sj.emboj.7600401, 15372076): 3825-3835
- Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin.Nat. Struct. Mol. Biol. 2008; 15 (10.1038/nsmb.1406, 18345014): 381-388
- Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi.Science. 2002; 297 (10.1126/science.1074973, 12193640): 1833-1837
- Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs.Cell. 2004; 119 (10.1016/j.cell.2004.11.034, 15607976): 789-802
- RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins.Science. 2004; 304 (10.1126/science.1099035, 15218150): 1971-1976
- Stc1: A critical link between RNAi and chromatin modification required for heterochromatin integrity.Cell. 2010; 140 (10.1016/j.cell.2010.01.038, 20211136): 666-677
- Control of heterochromatin localization and silencing by the nuclear membrane protein Lem2.Genes Dev. 2016; 30 (10.1101/gad.271288.115, 26744419): 133-148
- Role of inner nuclear membrane protein complex Lem2–Nur1 in heterochromatic gene silencing.J. Biol. Chem. 2016; 291 (10.1074/jbc.M116.743211, 27451393): 20021-20029
- Conserved structures and diversity of functions of RNA-binding proteins.Science. 1994; 265 (10.1126/science.8036511, 8036511): 615-621
- Vigilin, a ubiquitous protein with 14K homology domains, is the estrogen-inducible vitellogenin mRNA 3′-untranslated region-binding protein.J. Biol. Chem. 1997; 272 (10.1074/jbc.272.19.12249, 9139664): 12249-12252
- Characterisation of the nucleic-acid-binding activity of KH domains. Different properties of different domains.Eur. J. Biochem. 1996; 241 (10.1111/j.1432-1033.1996.00425.x, 8917439): 425-431
- DDP1, a single-stranded nucleic acid-binding protein of Drosophila, associates with pericentric heterochromatin and is functionally homologous to the yeast Scp160p, which is involved in the control of cell ploidy.EMBO J. 1999; 18 (10.1093/emboj/18.13.3820, 10393197): 3820-3833
- DDP1, a heterochromatin-associated multi-KH domain protein of Drosophila melanogaster, interacts specifically with centromeric satellite DNA sequences.Mol. Cell. Biol. 2000; 20 (10.1128/MCB.20.11.3860-3869.2000, 10805729): 3860-3869
- Drosophila DDP1, a Multi-KH-domain protein, contributes to centromeric silencing and chromosome segregation.Curr. Biol. 2004; 14 (10.1016/j.cub.2004.09.024, 15380062): 1611-1620
- On the mechanism of induction of heterochromatin by the RNA-binding protein vigilin.RNA. 2008; 14 (10.1261/rna.1036308, 18648073): 1773-1781
- Purification and nucleic-acid-binding properties of a Saccharomyces cerevisiae protein involved in the control of ploidy.Eur. J. Biochem. 1997; 249 (10.1111/j.1432-1033.1997.00309.x, 9363784): 309-317
- Scp160p, a new yeast protein associated with the nuclear membrane and the endoplasmic reticulum, is necessary for maintenance of exact ploidy.Yeast. 1995; 11 (10.1002/yea.320111004, 8533468): 929-944
- Scp160p is required for translational efficiency of codon-optimized mRNAs in yeast.Nucleic Acids Res. 2014; 42 (10.1093/nar/gkt1392, 24445806): 4043-4055
- Requirement of heterochromatin for cohesion at centromeres.Science. 2001; 294 (10.1126/science.1064027, 11598266): 2539-2542
- Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation.Genes Dev. 1995; 9 (10.1101/gad.9.2.218, 7851795): 218-233
- RNA interference is required for normal centromere function in fission yeast.Chromosome Res. 2003; 11 (10.1023/A:1022815931524, 12733640): 137-146
- Heterologous modules for efficient and versatile PCR based gene targeting in Schizosaccharomyces pombe.Yeast. 1998; 14 (10.1002/(SICI)1097-0061(199807)14:10%3C943::AID-YEA292%3E3.0.CO;2-Y, 9717240): 943-951
- Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin.Mol. Cell. 2007; 28 (10.1016/j.molcel.2007.12.002, 18158898): 1002-1014
- I-TASSER server for protein 3D structure prediction.BMC Bioinformatics. 2008; 9: 1471-2105
- The I-TASSER: Suite protein structure and function prediction.Nat. Methods. 2015; 12 (10.1038/nmeth.3213, 25549265): 7-8
- GalaxyRefine: Protein structure refinement driven by side-chain repacking.Nucleic Acids Res. 2013; 41 (10.1093/nar/gkt458, 23737448): 3
- Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization.Biophys. J. 2011; 101 (10.1016/j.bpj.2011.10.024, 22098752): 2525-2534
- Structure validation by Cα geometry: φ, ψ and Cβ deviation.Proteins. 2003; 50 (10.1002/prot.10286, 12557186): 437-450
- The ClusPro web server for protein–protein docking.Nat. Protoc. 2017; 12 (10.1038/nprot.2016.169, 28079879): 255-278
- ClusPro: a fully automated algorithm for protein–protein docking.Nucleic Acids Res. 2004; 32 (10.1093/nar/gkh354, 15215358): W96-W99
- Structural summaries of PDB entries.Protein Sci. 2018; 27 (10.1002/pro.3289, 28875543): 129-134
- Satisfying hydrogen bonding potential in proteins.J. Mol. Biol. 1994; 238 (10.1006/jmbi.1994.1334, 8182748): 777-793
- UCSF Chimera–a visualization system for exploratory research and analysis.J Comput Chem. 2004; 25 (10.1002/jcc.20084, 15264254): 1605-1612
Article info
Publication history
Footnotes
This work was supported by Department of Biotechnology, Government of India, Grants BT/PR16122/BRB/10/1478/2016 and BT/PR22348/BRB/10/1625/2017 and DST-SERB Grant EMR/2016/000958, Government of India (to M. A.); from DST-SERB in the form of Start-Up Grant for Young Scientists YSS/2015/001267 (to S. A. G.); University Grants Commission 23/12/2012(ii) EU-V for Senior Research fellowship (to Z. F.); and DST INSPIRE Grant IF150792 (to R. R.) for doctoral fellowship. The authors declare that they have no conflicts of interest with the contents of this article.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy