Introduction
- Enquist-Newman M.
- Faust A.M.
- Bravo D.D.
- Santos C.N.
- Raisner R.M.
- Hanel A.
- Sarvabhowman P.
- Le C.
- Regitsky D.D.
- Cooper S.R.
- Peereboom L.
- Clark A.
- Martinez Y.
- Goldsmith J.
- Cho M.Y.
- et al.
- Wargacki A.J.
- Leonard E.
- Win M.N.
- Regitsky D.D.
- Santos C.N.
- Kim P.B.
- Cooper S.R.
- Raisner R.M.
- Herman A.
- Sivitz A.B.
- Lakshmanaswamy A.
- Kashiyama Y.
- Baker D.
- Yoshikuni Y.
- Sellimi S.
- Younes I.
- Ayed H.B.
- Maalej H.
- Montero V.
- Rinaudo M.
- Dahia M.
- Mechichi T.
- Hajji M.
- Nasri M.
- Thomas F.
- Lundqvist L.C.
- Jam M.
- Jeudy A.
- Barbeyron T.
- Sandström C.
- Michel G.
- Czjzek M.
Results and discussion
Bioinformatic analysis of Dp0100

Enzymatic properties of Dp0100 and its truncated derivatives

Analysis of the alginate-binding properties of the noncatalytic domains
- Li S.
- Yang X.
- Bao M.
- Wu Y.
- Yu W.
- Han F.
- Lyu Q.Q.
- Zhang K.K.
- Zhu Q.Y.
- Li Z.J.
- Liu Y.J.
- Fitzek E.
- Yohe T.
- Zhao L.M.
- Li W.H.
- Liu T.
- Yin Y.B.
- Liu W.Z.
- Han W.
- Gu J.
- Cheng Y.
- Liu H.
- Li Y.
- Li F.
- Lyu Q.Q.
- Zhang K.K.
- Zhu Q.Y.
- Li Z.J.
- Liu Y.J.
- Fitzek E.
- Yohe T.
- Zhao L.M.
- Li W.H.
- Liu T.
- Yin Y.B.
- Liu W.Z.
Structure of the catalytic domain

PDB code | PL family | Z score | RMSD | LALI | Identity | Function |
---|---|---|---|---|---|---|
Å | % | |||||
3AFL | PL15 | 27 | 3.6 | 587 | 14 | Alginate lyase |
4OJZ | PL17 | 25.9 | 3.3 | 572 | 16 | Alginate lyase |
4FNV | PL12 | 24.9 | 4.4 | 494 | 15 | Heparinase III |
2FUQ | PL21 | 24.2 | 4.6 | 588 | 16 | Heparinase II |
4E1Y | PL5 | 21 | 3.2 | 288 | 13 | Alginate lyase |
6F2P | PL8 | 14.9 | 6.3 | 570 | 6 | Xanthan lyase |

Metal-binding sites

Ligand (Å) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Mn-1 | ND1His-407 (2.10) | NE2His-448 (2.14) | OD1Asp-425 (2.26) | w1 (2.29) | w5 (2.40) | w6 (2.31) | ||
Ca-1 | OD1Asp-409 (2.75) | OD2Asp-409 (2.62) | OE1Glu-287 (2.64) | OE2Glu-287 (2.64) | OHis-407 (2.57) | OE2Glu-401 (2.63) | w10 (2.63) | w11 (2.64) |
Ca-2 | OE1Gln-513 (2.58) | OD1Asp-479 (2.63) | OD2Asp-479 (2.65) | OD1Asp-474 (2.60) | OThr-475 (2.61) | w96 (2.65) | w477 (2.61) | |
Mg-1 | OE2Glu-133 (2.36) | OTrp-180 (1.97) | w160 (2.28) | w440 (2.25) | w443 (2.24) | w598 (2.07) |
Substrate binding and mechanism of Dp0100
apo-Native | SeMet | ΔMM-bound structure | M5-bound structure | |
---|---|---|---|---|
Data collection | ||||
Wavelength (Å) | 0.97179 | 0.97928 | 0.97625 | 0.97625 |
Resolution range (Å) | 98.70–2.07 (2.11–2.07) | 108.99–2.38 (2.42–2.38) | 130.96–2.76 (2.81–2.76) | 62.78–2.85 (2.90–2.85) |
Space group | C 2 2 21 | C 2 2 21 | P 3 2 1 | P 3 2 1 |
Unit cell (a, b, c) (Å) | 261.3, 394.8, 112.2 | 261.2, 395.4, 111.6 | 261.9, 261.9, 58.3 | 261.4, 261.4, 58.4 |
(α, β, γ) (°) | 90.0, 90.0, 90.0 | 90.0, 90.0, 90.0 | 90.0, 90.00, 120.0 | 90.0, 90.0, 120.0 |
Total reflections | 2,551,319 (104,358) | 2,551,319 (144,764) | 649,310 (32,281) | 594,163 (26,053) |
Unique reflections | 348,350 (16,738) | 226,731 (11,049) | 58,914 (2878) | 53,459 (2668) |
Multiplicity | 7.3 (6.2) | 13.6 (13.1) | 11.0 (11.2) | 11.1 (9.8) |
Completeness (%) | 99.5 (96.3) | 98.5 (96.9) | 100.0 (99.2) | 100.0 (100.0) |
Mean I/σ | 11.0 (1.8) | 7.4 (2.4) | 6.2 (0.9) | 11.5 (1.0) |
Wilson B-factor (Å2) | 32 | 18 | 56 | 67 |
Rmerge | 0.099 (0.699) | 0.325 (0.909) | 0.265 (2.319) | 0.217 (1.827) |
Rpim | 0.059 (0459) | 0.132 (0.381) | 0.122 (1.062) | 0.101 (0.910) |
CC½ | 0.992 (0.541) | 0.971 (0.396) | 0.986 (0.516) | 0.996 (0.524) |
Anomalous completeness (%) | 98.7 (97.1) | |||
Anomalous multiplicity | 7.0 (6.7) | |||
Anomalous correlation | 0.229 (0.318) | |||
Anomalous slope | 1.068 | |||
Refinement | ||||
Rfactor | 0.222 | 0.199 | 0.209 | |
Rfree | 0.240 | 0.226 | 0.223 | |
Atoms | ||||
Protein | 21,800 | 6240 | 6235 | |
Ligands | 61 | 40 | 61 | |
Ions | 12 | 4 | 4 | |
Water | 832 | 144 | 37 | |
Protein residues | 3080 | 770 | 770 | |
RMSD (bonds) (Å) | 0.0077 | 0.0034 | 0.0040 | |
RMSD (angles) (°) | 1.515 | 1.283 | 1.326 | |
Ramachandran favored (%) | 95.4 | 94.7 | 93.8 | |
Ramachandran outliers (%) | 0.2 | 0.1 | 0.5 | |
Favored rotamers (%) | 94.8 | 95.8 | 94.3 | |
Poor rotamers (%) | 0.75 | 0.3 | 0.6 | |
Molprobity score | 1.28 (99th percentile, 2.07 ± 0.25 Å) | 1.4 (100th percentile, 2.76 ± 0.25 Å) | 1.51 (100th percentile, 2.85 ± 0.25 Å) | |
Average B-factors | ||||
Main chain (Å2) | 59 | 64 | 74 | |
Side chains (Å2) | 51 | 68 | 75 | |
Ligands (Å2) | 63 | 77 | 89 | |
Ions (Å2) | 43 | 49 | 58 | |
Water (Å2) | 44 | 47 | 45 | |
PDB codes |

Binding residue | Target ligand (subsite) | Distance in ΔMM-bound structure | Distance in M5-bound structure |
---|---|---|---|
Å | Å | ||
OGSer-342 | O6 carboxyl (−2) | 2.83 | |
OGly-340 | O6 carboxyl (−2) | 3.27 | |
OHTyr-135 | O6 carboxyl (−1) | 3.41 | |
NE2His-238 | O3 (−1) | 2.86 | |
OHTyr-239 | O2 (−1) | 2.82 | |
OHTyr-239 | O4 (+1) | 3.21 | |
NE2His-187 | O6 carboxyl (+1) | 2.88 | ND |
NE2His-405 | O6 carboxyl (+1) | 2.48 | 2.65 |
ND2Asp-186 | O6 carboxyl (+1) | 2.84 | 3.01 |
OD1Asp-186 | O6 carboxyl (+1) | 2.52 | 2.81 |
OD1Asn-404 | O2 (+2) | 2.81 | 2.31 |
OGSer-127 | O6 carboxyl (+2) | 3.85 | 3.11 |
NE2His-185 | O6 carboxyl (+3) | 2.72 | 2.83 |
NH2Arg-183 | O4 (+3) | 3.33 | 3.27 |
NEArg-183 | O5 (+3) | 3.36 | 3.57 |

Mechanistic comparison with other PL family enzymes
- Thomas F.
- Lundqvist L.C.
- Jam M.
- Jeudy A.
- Barbeyron T.
- Sandström C.
- Michel G.
- Czjzek M.
- Thomas F.
- Lundqvist L.C.
- Jam M.
- Jeudy A.
- Barbeyron T.
- Sandström C.
- Michel G.
- Czjzek M.
- Thomas F.
- Lundqvist L.C.
- Jam M.
- Jeudy A.
- Barbeyron T.
- Sandström C.
- Michel G.
- Czjzek M.
- Thomas F.
- Lundqvist L.C.
- Jam M.
- Jeudy A.
- Barbeyron T.
- Sandström C.
- Michel G.
- Czjzek M.
- Thomas F.
- Lundqvist L.C.
- Jam M.
- Jeudy A.
- Barbeyron T.
- Sandström C.
- Michel G.
- Czjzek M.

Conclusions
Experimental procedures
Cloning, overexpression, and purification
Enzymes activity assay and kinetic analysis
- Thomas F.
- Lundqvist L.C.
- Jam M.
- Jeudy A.
- Barbeyron T.
- Sandström C.
- Michel G.
- Czjzek M.
Determination of pH and temperature optimum of Dp0100
Affinity gel electrophoresis and substrate specificity
Electron microscopy
Phylogenetic analyses
Crystallization and data collection
Phasing, structure determination, refinement, and substrate restraints
- Williams C.J.
- Headd J.J.
- Moriarty N.W.
- Prisant M.G.
- Videau L.L.
- Deis L.N.
- Verma V.
- Keedy D.A.
- Hintze B.J.
- Chen V.B.
- Jain S.
- Lewis S.M.
- Arendall W.B.
- Snoeyink J.
- Adams P.D.
- et al.
MCA spectrum and ICP-MS
Site-directed mutagenesis
Accession numbers
Author contributions
Acknowledgments
Supplementary Material
References
- Using marine macroalgae for carbon sequestration: a critical appraisal.J. Appl. Phycol. 2011; 23 (10.1007/s10811-010-9604-9): 877-886
- Marine macrophytes as a global carbon sink.Science. 1981; 211 (10.1126/science.211.4484.838, 17740399): 838-840
- Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform.Nature. 2014; 505 (10.1038/nature12771, 24291791): 239-243
- An engineered microbial platform for direct biofuel production from brown macroalgae.Science. 2012; 335 (10.1126/science.1214547, 22267807): 308-313
- Alginates.Carbohyd. Polym. 1988; 8 (10.1016/0144-8617(88)90001-X): 161-182
- Structural, physicochemical and antioxidant properties of sodium alginate isolated from a Tunisian brown seaweed.Int. J. Biol. Macromol. 2015; 72 (10.1016/j.ijbiomac.2014.10.016, 25453289): 1358-1367
- Biological interactions between polysaccharides and divalent cations: the egg-box model.FEBS Lett. 1973; 32 (10.1016/0014-5793(73)80770-7): 195-198
- Alginate: properties and biomedical applications.Prog. Polym. Sci. 2012; 37 (10.1016/j.progpolymsci.2011.06.003, 22125349): 106-126
- Alginic acid metabolism in bacteria. 1. Enzymatic formation of unsaturated oligosaccharides and 4-deoxy-l-erythro-5-hexoseulose uronic acid.J. Biol. Chem. 1962; 237 (14488584): 309-316
- Alginic acid metabolism in bacteria. 2. Enzymatic reduction of 4-deoxy-l-erythro-5-hexoseulose uronic acid to 2-keto-3-deoxy-d-gluconic acid.J. Biol. Chem. 1962; 237 (14488585): 317-321
- The carbohydrate-active enzymes database (CAZy) in 2013.Nucleic Acids Res. 2014; 42 (10.1093/nar/gkt1178, 24270786): D490-D495
- Structural and mechanistic classification of uronic acid-containing polysaccharide lyases.Glycobiology. 2010; 20 (10.1093/glycob/cwq122, 20805221): 1547-1573
- Crystal structure of exotype alginate lyase Atu3025 from Agrobacterium tumefaciens.J. Biol. Chem. 2010; 285 (10.1074/jbc.M110.125450, 20507980): 24519-24528
- Structure of a PL17 family alginate lyase demonstrates functional similarities among exotype depolymerases.J. Biol. Chem. 2014; 289 (10.1074/jbc.M113.531111, 24478312): 8645-8655
- Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate.J. Biol. Chem. 2013; 288 (10.1074/jbc.M113.467217, 23782694): 23021-23037
- Nomenclature for sugar-binding subsites in glycosyl hydrolases.Biochem. J. 1997; 321 (10.1042/bj3210557, 9020895): 557-559
- Alginate-modifying enzymes–a proposed unified mechanism of action for the lyases and epimerases.FEBS Lett. 1987; 212 (10.1016/0014-5793(87)81344-3): 199-202
- Uronic polysaccharide degrading enzymes.Curr. Opin. Struct. Biol. 2014; 28 (10.1016/j.sbi.2014.07.012, 25156747): 87-95
- Defluviitalea phaphyphila sp. nov., a novel thermophilic bacterium that degrades brown algae.Appl. Environ. Microb. 2016; 82 (10.1128/AEM.03297-15, 26590273): 868-877
- Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila.Biotechnol. Biofuels. 2016; 9 (10.1186/s13068-016-0494-1, 27042210): 81
- Substitution of one calcium-binding amino acid strengthens substrate binding in a thermophilic alginate lyase.FEBS Lett. 2018; 592 (10.1002/1873-3468.12965, 29292503): 369-379
- Crystal structure of heparinase II from Pedobacter heparinus and its complex with a disaccharide product.J. Biol. Chem. 2006; 281 (10.1074/jbc.M512055200, 16565082): 15525-15535
- Carbohydrate-binding modules: fine-tuning polysaccharide recognition.Biochem. J. 2004; 382 (10.1042/BJ20040892, 15214846): 769-781
- Family 13 carbohydrate-binding module of alginate lyase from Agarivorans sp. L11 enhances its catalytic efficiency and thermostability, and alters its substrate preference and product distribution.FEMS Microbiol. Lett. 2015; 362 (10.1093/femsle/fnv054, 25837818): fnv054
- Structural and biochemical characterization of a multidomain alginate lyase reveals a novel role of CBM32 in CAZymes.Biochem. Biophys. Acta Gen. Subj. 2018; 1862 (10.1016/j.bbagen.2018.05.024, 29864445): 1862-1869
- Novel alginate lyase (Aly5) from a polysaccharide-degrading marine bacterium, Flammeovirga sp. strain MY04: effects of module truncation on biochemical characteristics, alginate degradation patterns, and oligosaccharide-yielding properties.Appl. Environ. Microbiol. 2016; 82 (10.1128/AEM.03022-15, 26519393): 364-374
- Functional and structural studies of a multidomain alginate lyase from Persicobacter sp. CCB-QB2.Sci. Rep. 2017; 7 (10.1038/s41598-017-13288-1, 29057942): 13656
- Dali server update.Nucleic Acids Res. 2016; 44 (10.1093/nar/gkw357, 27131377): W351-W355
- Is the bond-valence method able to identify metal atoms in protein structures?.Acta Crystallogr. D Biol. Crystallogr. 2003; 59 (10.1107/S0907444902018000, 12499536): 32-37
- Substrate recognition by family 7 alginate lyase from Sphingomonas sp. A1.J. Mol. Biol. 2008; 380 (10.1016/j.jmb.2008.05.008, 18514736): 373-385
- Catalytic mechanism of heparinase II investigated by site-directed mutagenesis and the crystal structure with its substrate.J. Biol. Chem. 2010; 285 (10.1074/jbc.M110.101071, 20404324): 20051-20061
- Synergism of glycoside hydrolase secretomes from two thermophilic bacteria cocultivated on lignocellulose.Appl. Environ. Microbiol. 2014; 80 (10.1128/AEM.00295-14, 24532065): 2592-2601
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 1976; 72 (10.1016/0003-2697(76)90527-3, 942051): 248-254
- Some properties and action mode of (1 → 4)-α-l-guluronan lyase from Enterobacter cloacae M-1.Carbohydr. Res. 1997; 304 (10.1016/S0008-6215(97)00230-9, 9449764): 125-132
- Thiobarbituric acid spray reagent for deoxy sugars and sialic acids.Nature. 1960; 186 (237, 10.1038/186237a0, 13842941): 237
- Studies on the sequence of uronic acid residues in alginic acid.Acta Chem. Scand. 1967; 21 (10.3891/acta.chem.scand.21-0691): 691-704
- Affinity electrophoresis–review.Anal. Biochem. 1981; 112 (10.1016/0003-2697(81)90252-9, 7020477): 1-8
- Affinity electrophoresis for the identification and characterization of soluble sugar binding by carbohydrate-binding modules.Enzyme Microb. Technol. 2000; 27 (10.1016/S0141-0229(00)00246-5, 10978766): 453-458
- Identification and characterization of a novel periplasmic polygalacturonic acid binding protein from Yersinia enterolitica.J. Mol. Biol. 2007; 367 (10.1016/j.jmb.2007.01.030, 17292916): 1023-1033
- MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.Mol. Biol. Evol. 2016; 33 (10.1093/molbev/msw054, 27004904): 1870-1874
- Clustal W and Clustal X version 2.0.Bioinformatics. 2007; 23 (10.1093/bioinformatics/btm404, 17846036): 2947-2948
- The neighbor-joining method–a new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 1987; 4 (10.1093/oxfordjournals.molbev.a040454, 3447015): 406-425
- Xia2: an expert system for macromolecular crystallography data reduction.J. Appl. Cryst. 2010; 43 (10.1107/S0021889809045701): 186-190
- XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (10.1107/S0907444909047337, 20124692): 125-132
- Scaling and assessment of data quality.Acta Crystallogr. D Biol. Crystallogr. 2006; 62 (10.1107/S0907444905036693, 16369096): 72-82
- The ccp4 suite–programs for protein crystallography.Acta Crystallogr. D Biol. Crystallogr. 1994; 50 (10.1107/S0907444994003112, 15299374): 760-763
- A short history of SHELX.Acta Crystallogr. A. 2008; 64 (10.1107/S0108767307043930, 18156677): 112-122
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (10.1107/S0907444910007493, 20383002): 486-501
- Fitting molecular fragments into electron density.Acta Crystallogr. D Biol. Crystallogr. 2008; 64 (10.1107/S0907444907033938, 18094471): 83-89
- The use of phase combination in the refinement of phosphoglycerate kinase at 2.5 Å resolution.Acta Crystallogr. A. 1981; 37 (10.1107/S0567739481001186): 491-500
- REFMAC5 for the refinement of macromolecular crystal structures.Acta Crystallogr. D Biol. Crystallogr. 2011; 67 (10.1107/S0907444911001314, 21460454): 355-367
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40 (10.1107/S0021889807021206, 19461840): 658-674
- Strategies for carbohydrate model building, refinement and validation.Acta Crystallogr D. Struct. Biol. 2017; 73 (10.1107/S2059798316016910, 28177313): 171-186
- Privateer: software for the conformational validation of carbohydrate structures.Nat. Struct. Mol. Biol. 2015; 22 (10.1038/nsmb.3115, 26581513): 833-834
- MolProbity: more and better reference data for improved all-atom structure validation.Protein Sci. 2018; 27 (10.1002/pro.3330, 29067766): 293-315
- The PyMOL molecular graphics system, version 1.8.x.Schrödinger, LLC, New York2015
- Confidence-limits on phylogenies–an approach using the bootstrap.Evolution. 1985; 39 (10.1111/j.1558-5646.1985.tb00420.x, 28561359): 783-791
- Thin-layer chromatography of hyaluronate oligosaccharides.J. Biochem. 1984; 96 (10.1093/oxfordjournals.jbchem.a134890, 6501262): 721-725
- A novel oligoalginate lyase from abalone, Haliotis discus hannai, that releases disaccharide from alginate polymer in an exolytic manner.Carbohydr. Res. 2006; 341 (10.1016/j.carres.2006.04.032, 16697989): 1809-1819
Article info
Publication history
Footnotes
This work was supported by National Natural Science Foundation of China (NSFC) Grants 31670001 and 41506155, by Qingdao Municipal Science and Technology Bureau of China Grant 17-1-1-55-jch (to S. J.), by the Royal Society under the International Exchanges 2017 Cost Share (China) Programme Grant IEC\NSFC\170392 (to D. W. R., P. J. B., J. B. R., and S. J.) and under Royal Society University Research Fellow Award UF160039 (to J. A.)., and the China Scholarship Council (CSC) for Visiting Scholarship Award 201704910020 (to S. J.). The authors declare that they have no conflicts of interest with the contents of this article.
The atomic coordinates and structure factors (codes 6JP4, 6JPH, and 6JPN) have been deposited in the Protein Data Bank (http://wwpdb.org/).
The amino acid sequence of this protein can be accessed through NCBI Protein Database under NCBI Accession No. QDD67358.
This article contains Tables S1–S4 and Figs. S1–S5.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy