Introduction
- Tarpey P.S.
- Raymond F.L.
- O'Meara S.
- Edkins S.
- Teague J.
- Butler A.
- Dicks E.
- Stevens C.
- Tofts C.
- Avis T.
- Barthorpe S.
- Buck G.
- Cole J.
- Gray K.
- Halliday K.
- et al.
- Wada T.
- Sunaga H.
- Miyata K.
- Shirasaki H.
- Uchiyama Y.
- Shimba S.
- Taylor K.W.
- Novak R.F.
- Anderson H.A.
- Birnbaum L.S.
- Blystone C.
- Devito M.
- Jacobs D.
- Köhrle J.
- Lee D.H.
- Rylander L.
- Rignell-Hydbom A.
- Tornero-Velez R.
- Turyk M.E.
- Boyles A.L.
- Thayer K.A.
- et al.
Results
AhR negatively regulates adipocyte differentiation

AhR decreases the stability of PPARγ protein via a proteasome-dependent mechanism

AhR functions as a substrate receptor for CRL4B-mediated PPARγ degradation

Domain–domain interactions between PPARγ and AhR

Two lysines located on the hinge domain of PPARγ are targeted for ubiquitination by CRL4BAhR

Discussion
- Jennewein C.
- Kuhn A.M.
- Schmidt M.V.
- Meilladec-Jullig V.
- von Knethen A.
- Gonzalez F.J.
- Brüne B.
- Buchanan G.
- Ricciardelli C.
- Harris J.M.
- Prescott J.
- Yu Z.C.
- Jia L.
- Butler L.M.
- Marshall V.R.
- Scher H.I.
- Gerald W.L.
- Coetzee G.A.
- Tilley W.D.
- Georgiakaki M.
- Chabbert-Buffet N.
- Dasen B.
- Meduri G.
- Wenk S.
- Rajhi L.
- Amazit L.
- Chauchereau A.
- Burger C.W.
- Blok L.J.
- Milgrom E.
- Lombès M.
- Guiochon-Mantel A.
- Loosfelt H.
- Agostini M.
- Schoenmakers E.
- Mitchell C.
- Szatmari I.
- Savage D.
- Smith A.
- Rajanayagam O.
- Semple R.
- Luan J.
- Bath L.
- Zalin A.
- Labib M.
- Kumar S.
- Simpson H.
- Blom D.
- et al.
- Zou Y.
- Mi J.
- Cui J.
- Lu D.
- Zhang X.
- Guo C.
- Gao G.
- Liu Q.
- Chen B.
- Shao C.
- Gong Y.
- Tian L.
- Wang C.
- Hagen F.K.
- Gormley M.
- Addya S.
- Soccio R.
- Casimiro M.C.
- Zhou J.
- Powell M.J.
- Xu P.
- Deng H.
- Sauve A.A.
- Pestell R.G.
- Mayoral R.
- Osborn O.
- McNelis J.
- Johnson A.M.
- Oh D.Y.
- Izquierdo C.L.
- Chung H.
- Li P.
- Traves P.G.
- Bandyopadhyay G.
- Pessentheiner A.R.
- Ofrecio J.M.
- Cook J.R.
- Qiang L.
- Accili D.
- et al.
- Korecka A.
- Dona A.
- Lahiri S.
- Tett A.J.
- Al-Asmakh M.
- Braniste V.
- D'Arienzo R.
- Abbaspour A.
- Reichardt N.
- Fujii-Kuriyama Y.
- Rafter J.
- Narbad A.
- Holmes E.
- Nicholson J.
- Arulampalam V.
- et al.
- Wada T.
- Sunaga H.
- Miyata K.
- Shirasaki H.
- Uchiyama Y.
- Shimba S.

Experimental procedures
Plasmids
Antibodies and chemicals
Cell culture and adipocyte differentiation
Generation of AhR knockdown and overexpression stable cell lines
Protein stability assay and analysis
Protein purification and binding assays
Immunoprecipitation
PLA
Ubiquitination assay
In vitro ubiquitination assay
Mass spectrometry
Immunofluorescence analysis
RT-PCR analysis
Statistical analysis
Author contributions
Acknowledgments
Supplementary Material
References
- Obesity, inflammation, and atherosclerosis.Nat. Rev. Cardiol. 2009; 6 (10.1038/nrcardio.2009.55, 19399028): 399-409
- Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease.Int. J. Mol. Sci. 2014; 15 (10.3390/ijms15046184, 24733068): 6184-6223
- Forming functional fat: a growing understanding of adipocyte differentiation.Nat. Rev. Mol. Cell Biol. 2011; 12 (10.1038/nrm3198, 21952300): 722-734
- PPARγ and human metabolic disease.J. Clin. Investig. 2006; 116 (10.1172/JCI28003, 16511590): 581-589
- Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5.Nature. 2010; 466 (10.1038/nature09291, 20651683): 451-456
- Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ.Cell. 2012; 150 (10.1016/j.cell.2012.06.027, 22863012): 620-632
- The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation.Obesity. 2015; 23 (10.1002/oby.21220, 26380945): 2223-2232
- Suppression of PPARγ through MKRN1-mediated ubiquitination and degradation prevents adipocyte differentiation.Cell Death Differ. 2014; 21 (10.1038/cdd.2013.181, 24336050): 594-603
- The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARγ.eLife. 2015; 4 (10.7554/eLife.05615, 25905670): e05615
- Ubiquitin ligase NEDD4 regulates PPARγ stability and adipocyte differentiation in 3T3-L1 cells.Sci. Rep. 2016; 6 (10.1038/srep38550, 27917940): 38550
- CRL4s: the CUL4-RING E3 ubiquitin ligases.Trends Biochem. Sci. 2009; 34 (10.1016/j.tibs.2009.07.002, 19818632): 562-570
- Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation.Am. J. Hum. Genet. 2007; 80 (10.1086/512489, 17273978): 561-566
- Lack of Cul4b, an E3 ubiquitin ligase component, leads to embryonic lethality and abnormal placental development.PLoS One. 2012; 7 (10.1371/journal.pone.0037070, 22606329): e37070
- Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor.Am. J. Hum. Genet. 2007; 80 (10.1086/511134, 17236139): 345-352
- Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B.Gene. 2015; 573 (10.1016/j.gene.2015.08.064, 26344709): 33-45
- Lack of CUL4B in adipocytes promotes PPARγ-mediated adipose tissue expansion and insulin sensitivity.Diabetes. 2017; 66 (10.2337/db16-0743, 27899484): 300-313
- Aryl hydrocarbon receptor plays protective roles against high fat diet (HFD)-induced hepatic steatosis and the subsequent lipotoxicity via direct transcriptional regulation of Socs3 gene expression.J. Biol. Chem. 2016; 291 (10.1074/jbc.M115.693655, 26865635): 7004-7016
- Activation of aryl hydrocarbon receptor dissociates fatty liver from insulin resistance by inducing fibroblast growth factor 21.Hepatology. 2015; 61 (10.1002/hep.27719, 25614121): 1908-1919
- Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: a national toxicology program workshop review.Environ. Health Perspect. 2013; 121 (10.1289/ehp.1205502, 23651634): 774-783
- Adverse reproductive outcomes in the transgenic Ah receptor-deficient mouse.Toxicol. Appl. Pharmacol. 1999; 155 (10.1006/taap.1998.8601, 10036219): 62-70
- Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1.J. Biol. Chem. 2002; 277 (10.1074/jbc.M205670200, 12297502): 45099-45107
- Degradation of the peroxisome proliferator-activated receptor γ is linked to ligand-dependent activation.J. Biol. Chem. 2000; 275 (10.1074/jbc.M001297200, 10748014): 18527-18533
- F-box only protein 9 is an E3 ubiquitin ligase of PPARγ.Exp. Mol. Med. 2016; 48 (10.1038/emm.2016.31, 27197753): e234
- The ubiquitin ligase Siah2 regulates PPARγ activity in adipocytes.Endocrinology. 2012; 153 (10.1210/en.2011-1725, 22294748): 1206-1218
- Upregulation of SIRT1 by 17β-estradiol depends on ubiquitin-proteasome degradation of PPAR-γ mediated by NEDD4-1.Protein Cell. 2013; 4 (10.1007/s13238-013-2124-z, 23549616): 310-321
- The antiobesity factor WDTC1 suppresses adipogenesis via the CRL4WDTC1 E3 ligase.EMBO Rep. 2016; 17 (10.15252/embr.201540500, 27113764): 638-647
- Dioxin receptor is a ligand-dependent E3 ubiquitin ligase.Nature. 2007; 446 (10.1038/nature05683, 17392787): 562-566
- Peroxisome proliferator-activated receptor (PPAR) γ: adipose-predominant expression and induction early in adipocyte differentiation.Endocrinology. 1994; 135 (10.1210/endo.135.2.8033830, 8033830): 798-800
- Role of PPARγ in regulating adipocyte differentiation and insulin-responsive glucose uptake.Ann. N.Y. Acad. Sci. 1999; 892 (10.1111/j.1749-6632.1999.tb07792.x, 10842659): 134-145
- Posttranslational modifications of PPAR-γ: fine-tuning the metabolic master regulator.Obesity. 2009; 17 (10.1038/oby.2008.473, 19169221): 213-219
- PPARγ neddylation essential for adipogenesis is a potential target for treating obesity.Cell Death Differ. 2016; 23 (10.1038/cdd.2016.6, 26990658): 1296-1311
- Sumoylation of peroxisome proliferator-activated receptor γ by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from κB binding sites mediating transrepression of proinflammatory cytokines.J. Immunol. 2008; 181 (10.4049/jimmunol.181.8.5646, 18832723): 5646-5652
- General molecular biology and architecture of nuclear receptors.Curr. Top. Med. Chem. 2012; 12 (10.2174/156802612799436641, 22242852): 486-504
- Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein α.Cancer Res. 2007; 67 (10.1158/0008-5472.CAN-07-1646, 17942943): 10087-10096
- Regulation of androgen receptor-dependent transcription by coactivator MED1 is mediated through a newly discovered noncanonical binding motif.J. Biol. Chem. 2012; 287 (10.1074/jbc.M111.304519, 22102282): 858-870
- Ubiquitin-interaction motifs of RAP80 are critical in its regulation of estrogen receptor α.Nucleic Acids Res. 2007; 35 (10.1093/nar/gkl1112, 17311814): 1673-1686
- Research resource: comparison of gene profiles from wild-type ERα and ERα hinge region mutants.Mol. Endocrinol. 2014; 28 (10.1210/me.2014-1122, 24947674): 1352-1361
- Hic-5 is a transcription coregulator that acts before and/or after glucocorticoid receptor genome occupancy in a gene-selective manner.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (10.1073/pnas.1400522111, 24591583): 4007-4012
- Ligand-controlled interaction of histone acetyltransferase binding to ORC-1 (HBO1) with the N-terminal transactivating domain of progesterone receptor induces steroid receptor coactivator 1-dependent coactivation of transcription.Mol. Endocrinol. 2006; 20 (10.1210/me.2005-0149, 16645042): 2122-2140
- Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance.Cell Metab. 2006; 4 (10.1016/j.cmet.2006.09.003, 17011503): 303-311
- Nuclear transport of peroxisome-proliferator activated receptor α.J. Biochem. 2011; 149 (10.1093/jb/mvq144, 21138946): 311-319
- Characterization of nuclear localization signal in the N terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression.J. Biol. Chem. 2009; 284 (10.1074/jbc.M109.050427, 19801544): 33320-33332
- Aryl hydrocarbon receptor imported into the nucleus following ligand binding is rapidly degraded via the cytoplasmic proteasome following nuclear export.J. Biol. Chem. 1999; 274 (10.1074/jbc.274.40.28708, 10497241): 28708-28715
- DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA.J. Biol. Chem. 2005; 280 (10.1074/jbc.M507854200, 16223728): 39982-39989
- Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex.Cell. 2008; 135 (10.1016/j.cell.2008.10.045, 19109893): 1213-1223
- The CUL1 C-terminal sequence and ROC1 are required for efficient nuclear accumulation, NEDD8 modification, and ubiquitin ligase activity of CUL1.Mol. Cell. Biol. 2000; 20 (10.1128/MCB.20.21.8185-8197.2000, 11027288): 8185-8197
- Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1.Nature. 1999; 398 (10.1038/18230, 10086358): 160-165
- Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization.Genes Dev. 1998; 12 (10.1101/gad.12.22.3499, 9832503): 3499-3511
- Nuclear retention of IκBα protects it from signal-induced degradation and inhibits nuclear factor κB transcriptional activation.J. Biol. Chem. 1999; 274 (10.1074/jbc.274.13.9108, 10085161): 9108-9115
- Ubiquitin-dependent degradation of TGF-β-activated smad2.Nat. Cell Biol. 1999; 1 (10.1038/70258, 10587642): 472-478
- The nuclear ubiquitin-proteasome system degrades MyoD.J. Biol. Chem. 2001; 276 (10.1074/jbc.M009388200, 11309375): 22468-22475
- Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4.EMBO J. 2000; 19 (10.1093/emboj/19.22.6085, 11080155): 6085-6097
- Ubiquitin-mediated proteolysis of a short-lived regulatory protein depends on its cellular localization.J. Biol. Chem. 2000; 275 (10.1074/jbc.M006949200, 10991948): 39403-39410
- The world of protein acetylation.Biochim. Biophys. Acta. 2016; 1864 (10.1016/j.bbapap.2016.06.007, 27296530): 1372-1401
- Regulation of E2F1 activity by acetylation.EMBO J. 2000; 19 (10.1093/emboj/19.4.662, 10675335): 662-671
- Control of Smad7 stability by competition between acetylation and ubiquitination.Mol. Cell. 2002; 10 (10.1016/S1097-2765(02)00639-1, 12408818): 483-493
- Acetylation of p53 inhibits its ubiquitination by Mdm2.J. Biol. Chem. 2002; 277 (10.1074/jbc.C200578200, 12421820): 50607-50611
- Acetylation-defective mutant of Pparγ is associated with decreased lipid synthesis in breast cancer cells.Oncotarget. 2014; 5 (10.18632/oncotarget.2371, 25229978): 7303-7315
- Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity.Mol. Metab. 2015; 4 (10.1016/j.molmet.2015.02.007, 25973386): 378-391
- A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange.Nature. 2008; 456 (10.1038/nature07349, 18849969): 269-273
- Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism.NPJ Biofilms Microbiomes. 2016; 2 (10.1038/npjbiofilms.2016.14, 28721249): 16014
- Aryl hydrocarbon receptor deficiency protects mice from diet-induced adiposity and metabolic disorders through increased energy expenditure.Int. J. Obes. 2015; 39 (10.1038/ijo.2015.63, 25907315): 1300-1309
- CRL4B catalyzes H2AK119 monoubiquitination and coordinates with PRC2 to promote tumorigenesis.Cancer Cell. 2012; 22 (10.1016/j.ccr.2012.10.024, 23238014): 781-795
- Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl.Nat. Struct. Mol. Biol. 2012; 19 (10.1038/nsmb.2231, 22266821): 184-192
- Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma.Nature. 1998; 395 (10.1038/25931, 9744270): 137-143
Article info
Publication history
Footnotes
This work was supported by the National Natural Science Foundation of China (Grants 31872810 and 81401634), Shandong Province Science and Technology Development Project (Grant 2017GSF221013), and Young Scholars Program of Shandong University (Grant 21300075614018). The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Figs. S1–S4, Table S1, and supporting information.
The mass spectrometric raw data and spectral libraries associated with this manuscript are available from ProteomeXchange with the accession number PXD015830.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy