Introduction
- Susin S.A.
- Lorenzo H.K.
- Zamzami N.
- Marzo I.
- Snow B.E.
- Brothers G.M.
- Mangion J.
- Jacotot E.
- Costantini P.
- Loeffler M.
- Larochette N.
- Goodlett D.R.
- Aebersold R.
- Siderovski D.P.
- Penninger J.M.
- Kroemer G.
- van Empel V.P.
- Bertrand A.T.
- van der Nagel R.
- Kostin S.
- Doevendans P.A.
- Crijns H.J.
- de Wit E.
- Sluiter W.
- Ackerman S.L.
- De Windt L.J.
- Zhu C.
- Wang X.
- Huang Z.
- Qiu L.
- Xu F.
- Vahsen N.
- Nilsson M.
- Eriksson P.S.
- Hagberg H.
- Culmsee C.
- Plesnila N.
- Kroemer G.
- Blomgren K.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Cheung E.C.
- Joza N.
- Steenaart N.A.
- McClellan K.A.
- Neuspiel M.
- McNamara S.
- MacLaurin J.G.
- Rippstein P.
- Park D.S.
- Shore G.C.
- McBride H.M.
- Penninger J.M.
- Slack R.S.
- Joza N.
- Oudit G.Y.
- Brown D.
- Bénit P.
- Kassiri Z.
- Vahsen N.
- Benoit L.
- Patel M.M.
- Nowikovsky K.
- Vassault A.
- Backx P.H.
- Wada T.
- Kroemer G.
- Rustin P.
- Penninger J.M.
- Berger I.
- Ben-Neriah Z.
- Dor-Wolman T.
- Shaag A.
- Saada A.
- Zenvirt S.
- Raas-Rothschild A.
- Nadjari M.
- Kaestner K.H.
- Elpeleg O.
- Rinaldi C.
- Grunseich C.
- Sevrioukova I.F.
- Schindler A.
- Horkayne-Szakaly I.
- Lamperti C.
- Landoure G.
- Kennerson M.L.
- Burnett B.G.
- Bönnemann C.
- Biesecker L.G.
- Ghezzi D.
- Zeviani M.
- Fischbeck K.H.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Takeda K.
- Komuro Y.
- Hayakawa T.
- Oguchi H.
- Ishida Y.
- Murakami S.
- Noguchi T.
- Kinoshita H.
- Sekine Y.
- Iemura S.
- Natsume T.
- Ichijo H.
- Lenhausen A.M.
- Wilkinson A.S.
- Lewis E.M.
- Dailey K.M.
- Scott A.J.
- Khan S.
- Wilkinson J.C.
Results
Enzymatic activity of AIF is required for oxidant-induced MAPK phosphorylation
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.

- Lenhausen A.M.
- Wilkinson A.S.
- Lewis E.M.
- Dailey K.M.
- Scott A.J.
- Khan S.
- Wilkinson J.C.

- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.

AIF promotes the cadherin switch
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.

AIF ablation and JNK suppression converge to similar molecular phenotypes
- Bennett B.L.
- Sasaki D.T.
- Murray B.W.
- O'Leary E.C.
- Sakata S.T.
- Xu W.
- Leisten J.C.
- Motiwala A.
- Pierce S.
- Satoh Y.
- Bhagwat S.S.
- Manning A.M.
- Anderson D.W.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.

AIF-mediated signal transduction triggers the cadherin switch via JNK1
Failure to induce E-cadherin causes AIF-deficient cells to undergo apoptosis
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.

- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
AIF-mediated signaling is uncoupled from stabilization of the mitochondrial respiratory chain
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.

Change in ΔΨm | p | Change in abundance | p | |
---|---|---|---|---|
% | % | |||
HeLa | 20.9 | 0.020 | 9.7 | 0.587 |
HPAC | 16.3 | 0.007 | 34.2 | 0.002 |
MRC-5 | 15.5 | 0.007 | 19.6 | 0.026 |
DU145 | 13.9 | 0.064 | 23.4 | 0.147 |
MIA PaCa-2 | 13.7 | 0.128 | −13.8 | 0.212 |
HCT 116 | 12.6 | 0.079 | 21.7 | 0.315 |
PL45 | 8.5 | 0.149 | 30.2 | 0.120 |
BxPC-3 | 8.5 | 0.001 | 26.2 | 0.004 |
PANC-1 | 5.6 | 0.178 | −12.7 | 0.007 |
LNCaP | 4.7 | 0.553 | −13.2 | 0.376 |
PC3 | −2.0 | 0.595 | 2.6 | 0.272 |
RWPE-1 | −7.7 | 0.040 | −2.6 | 0.168 |
HPAF-II | −10.5 | 0.389 | −0.2 | 0.987 |
STS | −59.3 | 0.000 | −30.1 | 0.045 |
- Seo B.B.
- Matsuno-Yagi A.
- Yagi T.
- Milasta S.
- Dillon C.P.
- Sturm O.E.
- Verbist K.C.
- Brewer T.L.
- Quarato G.
- Brown S.A.
- Frase S.
- Janke L.J.
- Perry S.S.
- Thomas P.G.
- Green D.R.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
Discussion
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Susin S.A.
- Lorenzo H.K.
- Zamzami N.
- Marzo I.
- Snow B.E.
- Brothers G.M.
- Mangion J.
- Jacotot E.
- Costantini P.
- Loeffler M.
- Larochette N.
- Goodlett D.R.
- Aebersold R.
- Siderovski D.P.
- Penninger J.M.
- Kroemer G.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
Experimental procedures
Materials
Plasmids
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Lewis E.M.
- Wilkinson A.S.
- Jackson J.S.
- Mehra R.
- Varambally S.
- Chinnaiyan A.M.
- Wilkinson J.C.
- Goel H.L.
- Sayeed A.
- Breen M.
- Zarif M.J.
- Garlick D.S.
- Leav I.
- Davis R.J.
- Fitzgerald T.J.
- Morrione A.
- Hsieh C.C.
- Liu Q.
- Dicker A.P.
- Altieri D.C.
- Languino L.R.
- Rouget R.
- Auclair Y.
- Loignon M.
- Affar el B.
- Drobetsky E.A.
Antibodies
Cell culture
Lentiviral production and stable infection of cell lines
Cell lysis, fractionation, immunoprecipitation, and immunoblot analysis
Transfections
Drug treatments
Quantitative RT-PCR
Phase contrast microscopy
MatrigelTM experiments
Measurements of mitochondrial ΔΨm and abundance
Glucose consumption measurements
Author contributions
Acknowledgments
REFERENCES
- Mitochondria: in sickness and in health.Cell. 2012; 148 (10.1016/j.cell.2012.02.035 22424226): 1145-1159
- Mitochondrial ROS signaling in organismal homeostasis.Cell. 2015; 163 (10.1016/j.cell.2015.10.001 26496603): 560-569
- Molecular characterization of mitochondrial apoptosis-inducing factor.Nature. 1999; 397 (10.1038/17135 9989411): 441-446
- Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death.J. Cell Biol. 2002; 158 (10.1083/jcb.200202130 12147675): 507-517
- Downregulation of apoptosis-inducing factor in harlequin mutant mice sensitizes the myocardium to oxidative stress-related cell death and pressure overload-induced decompensation.Circ. Res. 2005; 96 (10.1161/01.RES.0000172081.30327.28 15933268): e92-e101
- Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death.J. Neurosci. 2004; 24 (10.1523/JNEUROSCI.3461-04.2004 15574746): 10963-10973
- Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia.Cell Death Differ. 2007; 14 (10.1038/sj.cdd.4402053 17039248): 775-784
- Apoptosis-inducing factor: structure, function, and redox regulation.Antioxid. Redox Signal. 2011; 14 (10.1089/ars.2010.3445 20868295): 2545-2579
- The enzymatic activity of apoptosis inducing factor supports energy metabolism benefiting the growth and invasiveness of advanced prostate cancer cells.J. Biol. Chem. 2012; 287 (10.1074/jbc.M112.407650 23118229): 43862-43875
- Basal metabolic state governs AIF-dependent growth support in pancreatic cancer cells.BMC Cancer. 2016; 16 (10.1186/s12885-016-2320-3 27108222): 286
- AIF suppresses chemical stress-induced apoptosis and maintains the transformed state of tumor cells.EMBO J. 2005; 24 (10.1038/sj.emboj.7600746 16001080): 2815-2826
- The harlequin mouse mutation downregulates apoptosis-inducing factor.Nature. 2002; 419 (10.1038/nature01034 12353028): 367-374
- Loss of Aif function causes cell death in the mouse embryo, but the temporal progression of patterning is normal.Proc. Natl. Acad. Sci. U.S.A. 2006; 103 (10.1073/pnas.0603950103 16788063): 9918-9923
- Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis.EMBO J. 2006; 25 (10.1038/sj.emboj.7601276 16917506): 4061-4073
- Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy.Mol. Cell. Biol. 2005; 25 (10.1128/MCB.25.23.10261-10272.2005 16287843): 10261-10272
- Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor.Am. J. Hum. Genet. 2010; 86 (10.1016/j.ajhg.2010.03.002 20362274): 639-649
- Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing.Mol. Genet. Metab. 2011; 104 (10.1016/j.ymgme.2011.09.020 22019070): 517-520
- A newly distal hereditary motor neuropathy caused by a rare AIFM1 mutation.Neurogenetics. 2017; 18 (10.1007/s10048-017-0524-6 28975462): 245-250
- Cowchock syndrome is associated with a mutation in apoptosis-inducing factor.Am. J. Hum. Genet. 2012; 91 (10.1016/j.ajhg.2012.10.008 23217327): 1095-1102
- AIF deficiency compromises oxidative phosphorylation.EMBO J. 2004; 23 (10.1038/sj.emboj.7600461 15526035): 4679-4689
- Interaction between AIF and CHCHD4 regulates respiratory chain biogenesis.Mol. Cell. 2015; 58 (10.1016/j.molcel.2015.04.020 26004228): 1001-1014
- ROS homeostasis and metabolism: a dangerous liaison in cancer cells.Cell Death Dis. 2016; 7 (10.1038/cddis.2016.105 27277675): e2253
- Expression of apoptosis-inducing factor (AIF) in keratoacanthomas and squamous cell carcinomas of the skin.Exp. Dermatol. 2011; 20 (10.1111/j.1600-0625.2011.01249.x 21410769): 674-676
- Implications of Bit1 and AIF overexpressions in esophageal squamous cell carcinoma.Tumour Biol. 2014; 35 (10.1007/s13277-013-1073-8 23955799): 519-527
- Immunohistochemical and mutational analysis of apoptosis-inducing factor (AIF) in colorectal carcinomas.APMIS. 2006; 114 (10.1111/j.1600-0463.2006.apm_502.x 17207087): 867-873
- Apoptosis-inducing factor and colon cancer.J. Surg. Res. 2009; 151 (10.1016/j.jss.2007.05.020 18061616): 163-170
- Immunohistochemical analysis of apoptosis-inducing factor (AIF) expression in gastric carcinomas.Pathol. Res. Pract. 2006; 202 (10.1016/j.prp.2006.03.004 16723191): 497-501
- Expression of AIF and HtrA2/Omi in small lymphocytic lymphoma and diffuse large B-cell lymphoma.Arch. Pathol. Lab. Med. 2011; 135 (21732781): 903-908
- Prognostic value of apoptosis inducing factor in uveal melanoma.Neoplasma. 2017; 64 (10.4149/neo_2017_213 28043154): 262-268
- NADH oxidase activity of mitochondrial apoptosis-inducing factor.J. Biol. Chem. 2001; 276 (10.1074/jbc.M010498200 11278689): 16391-16398
- Reactive oxygen species in cancer.Free Radic. Res. 2010; 44 (10.3109/10715761003667554 20370557): 479-496
- Signal transduction by the JNK group of MAP kinases.Cell. 2000; 103 (10.1016/S0092-8674(00)00116-1 11057897): 239-252
- A systems approach for decoding mitochondrial retrograde signaling pathways.Sci. Signal. 2013; 6 (23443683): rs4
- Mitonuclear communication in homeostasis and stress.Nat. Rev. Mol. Cell Biol. 2016; 17 (10.1038/nrm.2016.23 26956194): 213-226
- X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-b signaling.J. Biol. Chem. 2001; 276 (10.1074/jbc.M100331200 11356828): 26542-26549
- How cells read TGF-β signals.Nat. Rev. Mol. Cell Biol. 2000; 1 (10.1038/35043051 11252892): 169-178
- Mitochondrial phosphoglycerate mutase 5 uses alternate catalytic activity as a protein serine/threonine phosphatase to activate ASK1.Proc. Natl. Acad. Sci. U.S.A. 2009; 106 (10.1073/pnas.0901823106 19590015): 12301-12305
- Apoptosis-inducing factor is a target for ubiquitination through interaction with XIAP.Mol. Cell. Biol. 2008; 28 (10.1128/MCB.01065-07 17967870): 237-247
- Nondegradative ubiquitination of apoptosis inducing factor (AIF) by X-linked inhibitor of apoptosis at a residue critical for AIF-mediated chromatin degradation.Biochemistry. 2011; 50 (10.1021/bi201483g 22103349): 11084-11096
- Apoptosis inducing factor binding protein PGAM5 triggers mitophagic cell death that is inhibited by the ubiquitin ligase activity of X-linked inhibitor of apoptosis.Biochemistry. 2016; 55 (10.1021/acs.biochem.6b00306 27218139): 3285-3302
- Cell lines used in prostate cancer research: a compendium of old and new lines–part 1.J. Urol. 2005; 173 (10.1097/01.ju.0000141580.30910.57 15643172): 342-359
- Dual-specificity phosphatase 4 overexpression in cells prevents hypoxia/reoxygenation-induced apoptosis via the upregulation of eNOS.Front. Cardiovasc. Med. 2017; 4 (10.3389/fcvm.2017.00022 28484701): 22
- ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis.EMBO Rep. 2001; 2 (10.1093/embo-reports/kve046 11266364): 222-228
- The functional contrariety of JNK.Mol. Carcinog. 2007; 46 (10.1002/mc.20348 17538955): 591-598
- Molecular mechanisms of epithelial-mesenchymal transition.Nat. Rev. Mol. Cell Biol. 2014; 15 (10.1038/nrm3758 24556840): 178-196
- Cadherin switch in tumor progression.Ann. N.Y. Acad. Sci. 2004; 1014 (10.1196/annals.1294.016 15153430): 155-163
- LNCaP model of human prostatic carcinoma.Cancer Res. 1983; 43 (6831420): 1809-1818
- SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase.Proc. Natl. Acad. Sci. U.S.A. 2001; 98 (10.1073/pnas.251194298 11717429): 13681-13686
- The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase.Mol. Cell. Biol. 2002; 22 (10.1128/MCB.22.13.4929-4942.2002 12052897): 4929-4942
- Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways.Cancer Res. 2008; 68 (10.1158/0008-5472.CAN-07-2938 18483246): 3645-3654
- Modulation of oxidative phosphorylation of human kidney 293 cells by transfection with the internal rotenone-insensitive NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae.Biochim. Biophys. Acta. 1999; 1412 (10.1016/S0005-2728(99)00051-1 10354494): 56-65
- Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis.Elife. 2014; 3 (10.7554/eLife.02242 24843020): e02242
- Apoptosis-inducing-factor-dependent mitochondrial function is required for T cell but not B cell function.Immunity. 2016; 44 (10.1016/j.immuni.2015.12.002 26795252): 88-102
- Understanding the intersections between metabolism and cancer biology.Cell. 2017; 168 (10.1016/j.cell.2016.12.039 28187287): 657-669
- Apoptosis-inducing factor: vital and lethal.Trends Cell Biol. 2006; 16 (10.1016/j.tcb.2006.03.008 16621561): 264-272
- The 2 faces of JNK signaling in cancer.Genes Cancer. 2013; 4 (10.1177/1947601913486349 24349637): 397-400
- E-cadherin's dark side: possible role in tumor progression.Biochim. Biophys. Acta. 2012; 1826 (22440943): 23-31
- E1B and E4 oncoproteins of adenovirus antagonize the effect of apoptosis inducing factor.Virology. 2014; 456 (24889240): 205-219
- Regulation of the copper chaperone CCS by XIAP-mediated ubiquitination.Mol. Cell. Biol. 2010; 30 (10.1128/MCB.00900-09 20154138): 1923-1936
- Lentivirus-delivered stable gene silencing by RNAi in primary cells.RNA. 2003; 9 (10.1261/rna.2192803 12649500): 493-501
- Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5.Proc. Natl. Acad. Sci. U.S.A. 2003; 100 (10.1073/pnas.232688199 12518064): 183-188
- Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways.Science. 1997; 275 (10.1126/science.275.5296.90 8974401): 90-94
- Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides.Nature. 2014; 508 (10.1038/nature13110 24670634): 108-112
- Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex.Science. 2005; 307 (10.1126/science.1106148 15718470): 1098-1101
- SMAC/Diablo mediates the proapoptotic function of PUMA by regulating PUMA-induced mitochondrial events.Oncogene. 2007; 26 (10.1038/sj.onc.1210196 17237824): 4189-4198
- Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation.J. Clin. Invest. 2008; 118 (10.1172/JCI37156 19033664): 3943-3953
- β1 integrins mediate resistance to ionizing radiation in vivo by inhibiting c-Jun amino-terminal kinase 1.J. Cell. Physiol. 2013; 228 (10.1002/jcp.24323 23359252): 1601-1609
- A sensitive flow cytometry-based nucleotide excision repair assay unexpectedly reveals that mitogen-activated protein kinase signaling does not regulate the removal of UV-induced DNA damage in human cells.J. Biol. Chem. 2008; 283 (10.1074/jbc.M706257200 18093981): 5533-5541
- HSF1 critically attunes proteotoxic stress sensing by mTORC1 to combat stress and promote growth.Nat. Cell Biol. 2016; 18 (10.1038/ncb3335 27043084): 527-539
- Cytoprotective effects of IAPs revealed by a small molecule antagonist.Biochem. J. 2009; 417 (10.1042/BJ20081677 18851715): 765-771
- VIAF, a conserved inhibitor of apoptosis (IAP)-interacting factor that modulates caspase activation.J. Biol. Chem. 2004; 279 (10.1074/jbc.M409623200 15371430): 51091-51099
- Excess capacity of the iron regulatory protein system.J. Biol. Chem. 2007; 282 (10.1074/jbc.M703167200 17604281): 24650-24659
- Upstream regulatory role for XIAP in receptor-mediated apoptosis.Mol. Cell. Biol. 2004; 24 (10.1128/MCB.24.16.7003-7014.2004 15282301): 7003-7014
Article info
Publication history
Footnotes
This work was supported by North Dakota State University Center for Diagnostic and Therapeutic Strategies in Pancreatic Cancer under National Institutes of Health COBRE Program Grant 1P20GM109024, State of North Dakota Experimental Program to Stimulate Competitive Research Grant ND-EPSCoR Project FAR0022246 (to J. C. W.), Grant W81XWH-08-1-0045 (to J. C. W.) from the Department of Defense Prostate Cancer Research Program, Grant RSG-09-166-01-CCG (to J. C. W.) from the American Cancer Society, and Grant 1R15CA206067-01 (to J. C. W.) from the National Institutes of Health. The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy