Introduction
- Planells-Cases R.
- Lutter D.
- Guyader C.
- Gerhards N.M.
- Ullrich F.
- Elger D.A.
- Kucukosmanoglu A.
- Xu G.
- Voss F.K.
- Reincke S.M.
- Stauber T.
- Blomen V.A.
- Vis D.J.
- Wessels L.F.
- Brummelkamp T.R.
- et al.
- Planells-Cases R.
- Lutter D.
- Guyader C.
- Gerhards N.M.
- Ullrich F.
- Elger D.A.
- Kucukosmanoglu A.
- Xu G.
- Voss F.K.
- Reincke S.M.
- Stauber T.
- Blomen V.A.
- Vis D.J.
- Wessels L.F.
- Brummelkamp T.R.
- et al.
- Planells-Cases R.
- Lutter D.
- Guyader C.
- Gerhards N.M.
- Ullrich F.
- Elger D.A.
- Kucukosmanoglu A.
- Xu G.
- Voss F.K.
- Reincke S.M.
- Stauber T.
- Blomen V.A.
- Vis D.J.
- Wessels L.F.
- Brummelkamp T.R.
- et al.
- Planells-Cases R.
- Lutter D.
- Guyader C.
- Gerhards N.M.
- Ullrich F.
- Elger D.A.
- Kucukosmanoglu A.
- Xu G.
- Voss F.K.
- Reincke S.M.
- Stauber T.
- Blomen V.A.
- Vis D.J.
- Wessels L.F.
- Brummelkamp T.R.
- et al.
Results

Cysteine scanning of LRRC8 N termini and modification by 2-aminoethyl methanethiosulfonate (MTSEA) and Cd2+

Mutations in Glu-6 change VRAC's halide permeability
Mutants | ΔErev | PI/PCl | n |
---|---|---|---|
mV | |||
WT/WT | −5.90 ± 0.24 | 1.29 ± 0.01 | 5 |
T5C/WT | −7.13 ± 1.80 | 1.35 ± 0.10 | 4 |
E6C/E6C | −19.90 ± 1.04 | 2.29 ± 0.10 | 7 |
L7C/WT | −4.92 ± 0.85 | 1.23 ± 0.04 | 4 |
R8C/R8C | −9.10 ± 0.82 | 1.47 ± 0.05 | 3 |
Y9C/Q9C | −9.24 ± 0.40 | 1.48 ± 0.02 | 3 |
A11C/S11C | −7.2 ± 0.90 | 1.36 ± 0.05 | 3 |
D12C/E12C | −8.03 ± 0.53 | 1.41 ± 0.03 | 4 |
T13C/WT | −6.6 ± 1.20 | 1.30 ± 0.06 | 3 |
Q14C/Q14C | −4.92 ± 0.85 | 1.23 ± 0.04 | 4 |
P15C/P15C | −7.38 ± 0.57 | 1.37 ± 0.03 | 4 |

Mutants | ΔErev | PI/PCl | n |
---|---|---|---|
mV | |||
WT/WT | −5.90 ± 0.24 | 1.29 ± 0.01 | 5 |
E6C/E6C | −19.9 ± 1.04 | 2.29 ± 0.10 | 7 |
E6C/WT | −7.31 ± 1.0 | 1.36 ± 0.05 | 4 |
WT/E6C | −7.34 ± 1.7 | 1.36 ± 0.09 | 5 |
LRRC8 N termini modulate voltage-dependent inactivation

N-terminal LRRC8 residues influence current rectification

Discussion
Structure and function of VRACs
- Planells-Cases R.
- Lutter D.
- Guyader C.
- Gerhards N.M.
- Ullrich F.
- Elger D.A.
- Kucukosmanoglu A.
- Xu G.
- Voss F.K.
- Reincke S.M.
- Stauber T.
- Blomen V.A.
- Vis D.J.
- Wessels L.F.
- Brummelkamp T.R.
- et al.
LRRC8 N termini contribute to the pore of VRACs

Coupling between permeation and inactivation gating
Comparison with pannexin, connexin, and CALHM channels
- Planells-Cases R.
- Lutter D.
- Guyader C.
- Gerhards N.M.
- Ullrich F.
- Elger D.A.
- Kucukosmanoglu A.
- Xu G.
- Voss F.K.
- Reincke S.M.
- Stauber T.
- Blomen V.A.
- Vis D.J.
- Wessels L.F.
- Brummelkamp T.R.
- et al.
Materials and methods
Molecular biology
Cell culture and transfection
Immunocytochemistry and antibodies
Whole-cell voltage-clamp recordings
Reagents and chemical modification
Data analysis
where ΔErev is the shift in reversal potential, [Cl]hypo and [Cl]subst are the extracellular Cl− concentrations in the normal and anion-substituted hypotonic saline (I−, SCN−, F−, and Br−), and [X]subst is the concentration of the substituting anion. R is the gas constant, T is the absolute temperature, and F is the Faraday constant. Effects of acute MTSEA or MTSES application were assessed as the ratio of current amplitude at the end of application over steady-state current in hypotonic medium immediately before application.
Author contributions
Acknowledgments
Supplementary Material
References
- VRACs and other ion channels and transporters in the regulation of cell volume and beyond.Nat. Rev. Mol. Cell Biol. 2016; 17 (27033257): 293-307
- Volume expansion-sensing outward-rectifier Cl− channel: fresh start to the molecular identity and volume sensor.Am. J. Physiol. Cell Physiol. 1997; 273 (9316396): C755-C789
- The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding.Am. J. Physiol. Cell Physiol. 1994; 267 (7526694): C1203-C1209
- Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC.Science. 2014; 344 (24790029): 634-638
- Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs.EMBO J. 2015; 34 (26530471): 2993-3008
- Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels.J. Cell Sci. 2017; 130 (28193731): 1122-1133
- The protein synthesis inhibitor blasticidin S enters mammalian cells via leucine-rich repeat-containing protein 8D.J. Biol. Chem. 2014; 289 (24782309): 17124-17131
- Physiology of cell volume regulation in vertebrates.Physiol. Rev. 2009; 89 (19126758): 193-277
- Ca2+ sensitivity of volume-regulatory K+ and Cl− channels in cultured human epithelial cells.J. Physiol. 1988; 402 (2466988): 687-702
- Role of potassium and chloride channels in volume regulation by T lymphocytes.Soc. Gen. Physiol. Ser. 1988; 43 (2479106): 281-301
- Biophysics and physiology of the volume-regulated anion channel (VRAC)/volume-sensitive outwardly rectifying anion channel (VSOR).Pflugers Arch. 2016; 468 (26739710): 371-383
- Properties of volume-regulated anion channels in mammalian cells.Prog. Biophys. Mol. Biol. 1997; 68 (9481145): 69-119
- Cell volume-sensitive chloride channels: phenotypic properties and molecular identity.Contrib. Nephrol. 2006; 152 (17065805): 9-24
- The identification of VRAC (volume regulated anion channel): an amazing odyssey.Acta Physiol. 2015; 213 (25565132): 868-881
- SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel.Cell. 2014; 157 (24725410): 447-458
- LRRC8 proteins share a common ancestor with pannexins, and may form hexameric channels involved in cell-cell communication.BioEssays. 2012; 34 (22532330): 551-560
- LRRC8 proteins form volume-regulated anion channels that sense ionic strength.Cell. 2016; 164 (26824658): 499-511
- Inactivation and anion selectivity of volume-regulated anion channels (VRACs) depend on C-terminal residues of the first extracellular loop.J. Biol. Chem. 2016; 291 (27325695): 17040-17048
- Molecular composition and heterogeneity of the LRRC8-containing swelling-activated osmolyte channels in primary rat astrocytes.J. Physiol. 2017; 595 (28833202): 6939-6951
- Leucine-rich repeat containing 8A (LRRC8A) is essential for T lymphocyte development and function.J. Exp. Med. 2014; 211 (24752297): 929-942
- Ion selectivity in potassium channels.Biophys. Chem. 2006; 124 (16843584): 279-291
- LRRC8/VRAC anion channels enhance β-cell glucose sensing and insulin secretion.Nat. Commun. 2018; 9 (29773801): 1974
- SWELL1 is a glucose sensor regulating β-cell excitability and systemic glycaemia.Nat. Commun. 2018; 9 (29371604): 367
- LRRC8 involved in B cell development belongs to a novel family of leucine-rich repeat proteins.FEBS Lett. 2004; 564 (15094057): 147-152
- Calcium homeostasis modulator (CALHM) ion channels.Pflugers Arch. 2016; 468 (26603282): 395-403
- Atomic structure of the innexin-6 gap junction channel determined by cryo-EM.Nat. Commun. 2016; 7 (27905396): 13681
- Structure of a volume-regulated anion channel of the LRRC8 family.Nature. 2018; 558 (29769723): 254-259
- On the use of thiol-modifying agents to determine channel topology.Neuropharmacology. 1996; 35 (8938712): 797-804
- Metal bridges to probe membrane ion channel structure and function.Biomol. Concepts. 2015; 6 (26103632): 191-203
- Gated access to the pore of a voltage-dependent K+ channel.Neuron. 1997; 19 (9247273): 175-184
- Structure of the connexin 26 gap junction channel at 3.5 Å resolution.Nature. 2009; 458 (19340074): 597-602
- Subunit-dependent oxidative stress sensitivity of LRRC8 volume-regulated anion channels.J. Physiol. 2017; 595 (28841766): 6719-6733
- Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment.Biophys. J. 1996; 70 (8744306): 2688-2695
- Investigation of LRRC8-mediated volume-regulated anion currents in Xenopus oocytes.Biophys. J. 2016; 111 (27705766): 1429-1443
- Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.J. Membr. Biol. 2009; 228 (19381710): 151-164
- Single-channel SCAM identifies pore-lining residues in the first extracellular loop and first transmembrane domains of Cx46 hemichannels.J. Gen. Physiol. 2003; 122 (12975451): 389-405
- Pore-lining residues identified by single channel SCAM studies in Cx46 hemichannels.Cell Commun. Adhes. 2003; 10 (14681015): 193-199
- Identification of a pore lining segment in gap junction hemichannels.Biophys. J. 1997; 72 (9129799): 1946-1953
- Atomic distance estimates from disulfides and high-affinity metal-binding sites in a K+ channel pore.Biophys. J. 1997; 72 (8994597): 117-126
- Cellular and molecular physiology of volume-sensitive anion channels.Am. J. Physiol. Cell Physiol. 1996; 270 (8638650): C711-C730
- Reduction of ionic strength activates single volume-regulated anion channels (VRAC) in endothelial cells.Pflugers Arch. 2000; 439 (10650983): 315-320
- Amazing chloride channels: an overview.Acta Physiol. Scand. 2003; 177 (12558550): 119-147
- Structural basis for the coupling between activation and inactivation gates in K+ channels.Nature. 2010; 466 (20613845): 272-275
- Gating of the voltage-dependent chloride channel ClC-0 by the permeant anion.Nature. 1995; 373 (7845466): 527-531
- Gating the selectivity filter in ClC chloride channels.Science. 2003; 300 (12649487): 108-112
- Gating the glutamate gate of CLC-2 chloride channel by pore occupancy.J. Gen. Physiol. 2016; 147 (26666914): 25-37
- Modulation of voltage-dependent properties of a swelling-activated Cl− current.J. Gen. Physiol. 1997; 110 (9276756): 313-325
- Control of volume-sensitive chloride channel inactivation by the coupled action of intracellular chloride and extracellular protons.Pflugers Arch. 2010; 460 (20454973): 633-644
- Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane.J. Biol. Chem. 2007; 282 (17715132): 31733-31743
- Reversal of the gating polarity of gap junctions by negative charge substitutions in the N-terminus of connexin 32.Biophys. J. 2000; 79 (11053119): 2403-2415
- The first extracellular loop domain is a major determinant of charge selectivity in connexin46 channels.Biophys. J. 2000; 79 (11106610): 3036-3051
- Loop gating of connexin hemichannels involves movement of pore-lining residues in the first extracellular loop domain.J. Biol. Chem. 2009; 284 (19074140): 4484-4493
- SCAM analysis of Panx1 suggests a peculiar pore structure.J. Gen. Physiol. 2010; 136 (20937692): 515-527
- Charges dispersed over the permeation pathway determine the charge selectivity and conductance of a Cx32 chimeric hemichannel.J. Physiol. 2008; 586 (18372303): 2445-2461
- Opposite voltage gating polarities of two closely related connexins.Nature. 1994; 368 (8127371): 348-351
- Mutations in connexin genes and disease.Eur. J. Clin. Invest. 2011; 41 (20840374): 103-116
- Human diseases associated with connexin mutations.Biochim. Biophys. Acta. 2018; 1860 (28457858): 192-201
- The NH2 terminus regulates voltage-dependent gating of CALHM ion channels.Am. J. Physiol. Cell Physiol. 2017; 313 (28515089): C173-C186
- The structure of the potassium channel: molecular basis of K+ conduction and selectivity.Science. 1998; 280 (9525859): 69-77
Article info
Publication history
Footnotes
This work was supported by European Research Council Advanced Grants 294435 “Cytovolion” and 740537 “Volsignal” and Deutsche Forschungsgemeinschaft Grants JE 164/12-1, SFB 740 TPC05, and NeuroCure Cluster of Excellence (to T. J. J.) and by a stipend from the Alexander von Humboldt Foundation (to P. Z.). The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Figs. S1–S5.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy