Introduction
- Weiner L.M.
- Webb A.K.
- Limbago B.
- Dudeck M.A.
- Patel J.
- Kallen A.J.
- Edwards J.R.
- Sievert D.M.
- Weiner L.M.
- Webb A.K.
- Limbago B.
- Dudeck M.A.
- Patel J.
- Kallen A.J.
- Edwards J.R.
- Sievert D.M.

Results
PBP4 is a critical locus responsible for reduced β-lactam susceptibility in E. faecalis

Strain | MIC | ||||
---|---|---|---|---|---|
Ampicillin | Penicillin | Ceftriaxone | Imipenem | Ceftaroline | |
μg/ml | |||||
JH2–2 | 0.78 | 1.56 | >100 | 0.78 | 3.13 |
JH2–2Δpbp4 | 0.39 | 0.78 | 0.39 | 0.39 | <0.098 |
LS304Δpbp4(PBP4) | 1.56 | 6.25 | >100 | 3.13 | 6.25 |
PBP4 from E. faecalis adopts a structure similar to PBP5 from E. faecium
PBP5 open | PBP5 closed | PBP5 + benzylpenicillin | PBP5 + imipenem | PBP4 apo | PBP4 + benzylpencillin | PBP4 + imipenem | PBP4 + ceftaroline | |
---|---|---|---|---|---|---|---|---|
Data collection | ||||||||
Space group | P6322 | P43212 | P6322 | P6322 | C2 | C2 | C2 | C2 |
Cell dimensions | ||||||||
a, b, c (Å) | 190.5, 190.5, 156.5 | 62.7, 62.7, 371.2 | 192.3, 192.3, 156.1 | 192.9, 192.9, 155.9 | 124.7, 84.6, 85.1 | 123.3, 85.5, 83.7 | 123.8, 85.4, 84.6 | 123.5, 85.5, 82.7 |
α, β, γ (degrees) | 90, 90, 120 | 90, 90, 90 | 90, 90, 120 | 90, 90, 120 | 90, 109.3, 90 | 90, 109.5, 90 | 90, 110.3, 90 | 90, 109.9, 90 |
Resolution (Å) | 39.5–2.70 (2.79–2.70) | 30.0–2.86 (2.94–2.86) | 39.0–2.93 (3.06–2.93) | 29.8–2.80 (2.91–2.80) | 17.5–1.80 (1.83–1.80) | 17.7–2.34 (2.38–2.34) | 37.9–2.62 (2.74–2.62) | 39.0–2.98 (3.17–2.98) |
Rmerge | 0.059 (0.445) | 0.152 (0.575) | 0.255 (2.78) | 0.157 (1.66) | 0.072 (0.430) | 0.162 (0.606) | 0.058 (0.211) | 0.136 (0.396) |
I/σ(I) | 13.0 (2.5) | 12.7 (3.0) | 9.2 (1.7) | 20.1 (1.8) | 16.5 (2.5) | 9.4 (2.1) | 12.5 (3.7) | 5.4 (2.3) |
CC½ | 0.997 (0.707) | 0.997 (0.778) | 0.991 (0.379) | 0.999 (0.337) | 0.998 (0.685) | 0.991 (0.750) | 0.959 (0.321) | 0.890 (0.881) |
Completeness | 0.99 (0.98) | 0.99 (0.91) | 0.99 (0.98) | 0.99 (0.99) | 0.99 (0.87) | 0.99 (1.00) | 0.96 (0.77) | 0.98 (0.92) |
Redundancy | 3.1 (3.2) | 12.9 (9.9) | 7.5 (7.5) | 18.3 (12.9) | 6.7 (1.6) | 8.1 (6.0) | 4.6 (4.0) | 3.8 (3.8) |
Refinement | ||||||||
Resolution (Å) | 39.5–2.7 | 29.7–2.9 | 39.0–2.9 | 29.8–2.8 | 17.5–1.80 | 17.7–2.34 | 37.9–2.62 | 39.0–2.98 |
Unique reflections | 45,727 | 18,016 | 36,572 | 42,395 | 76,417 | 34,537 | 23,930 | 16,139 |
Rwork/Rfree | 0.18/0.21 | 0.22/0.28 | 0.19/0.21 | 0.17/0.20 | 0.19/0.21 | 0.20/0.22 | 0.20/0.23 | 0.23/0.26 |
No. of atoms | 4,874 | 4,478 | 4,880 | 5,047 | 4,239 | 3,597 | 3,482 | 3,189 |
Protein | 4,664 | 4,473 | 4,726 | 4,788 | 3,623 | 3,167 | 3,371 | 3,108 |
Ligand/ion | 85 | 115 | 95 | 15 | 39 | 30 | 55 | |
Water | 125 | 5 | 39 | 164 | 601 | 391 | 81 | 26 |
B factors | ||||||||
Protein | 56.8 | 57.6 | 63.5 | 76.8 | 20.7 | 28.3 | 65.2 | 56.8 |
Ligand/ion | 106.5 | 101.8 | 100.7 | 41.0 | 46.4 | 91.7 | 83.9 | |
Water | 50.0 | 38.3 | 45.8 | 67.7 | 33.3 | 37.8 | 62.0 | 46.8 |
RMSDs | ||||||||
Bond lengths (Å) | 0.006 | 0.002 | 0.002 | 0.002 | 0.015 | 0.002 | 0.002 | 0.002 |
Bond angles (degrees) | 0.743 | 0.497 | 0.453 | 0.494 | 1.17 | 0.478 | 0.428 | 0.555 |
PDB code | 6MKA | 6MKJ | 6MKG | 6MKF | 6BSQ | 6BSR | 6MKH | 6MKI |

The N1 and N2 domains are mobile, rotating as rigid bodies independently of the TPase domain

Conformational changes associated with β-lactam acylation are localized to the catalytic site

Penicillins: Benzylpenicillin acylation induces a rotation of the nucleophilic serine and a twist of strand β3
Carbapenems: Imipenem acylation does not alter the twist of strand β3
Cephalosporins: Ceftaroline acylation results in the widest opening of the catalytic cleft
β-Lactam acylation does not increase PBP4 and PBP5 thermal stability
PBP | 1-h incubation | 12-h incubation | ||
---|---|---|---|---|
Tm | ΔTm* | Tm | ΔTm* | |
°C | °C | |||
PBP4 | ||||
Apo | 54.4 ± 0.1 | 53.4 ± 0.2 | ||
Benzylpenicillin | 53.6 ± 0.1 | −0.8 | 53.0 ± 0.1 | −0.4 |
Imipenem | 54.9 ± 0.2 | +0.5 | 55.2 ± 0.1 | +1.8 |
Ceftaroline | 50.8 ± 0.1 | −3.6 | 51.4 ± 0.1 | −2.0 |
PBP5 | ||||
Apo | 53.2 ± 0.1 | 53.0 ± 0.1 | − | |
Benzylpenicillin | 53.9 ± 0.3 | +0.7 | 54.8 ± 0.2 | +1.8 |
Imipenem | 53.4 ± 0.2 | +0.1 | 53.2 ± 0.3 | +0.2 |
Ceftaroline | 56.4 ± 0.1 | +3.2 | 57.2 ± 0.3 | +4.2 |
Discussion
- Otero L.H.
- Rojas-Altuve A.
- Llarrull L.I.
- Carrasco-López C.
- Kumarasiri M.
- Lastochkin E.
- Fishovitz J.
- Dawley M.
- Hesek D.
- Lee M.
- Johnson J.W.
- Fisher J.F.
- Chang M.
- Mobashery S.
- Hermoso J.A.
Experimental procedures
Complementation of pbp4 in E. faecalis pbp4-deletion mutant JH2-2Δpbp4
Cloning and expression of PBP4 and PBP5
Crystallization
PBP4
PBP5, open state
PBP5, closed state
Data collection, processing, and solution
Differential scanning fluorimetry
Author contributions
Acknowledgments
Supplementary Material
References
- Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE.J. Infect. Dis. 2008; 197 (18419525): 1079-1081
- Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014.Infect. Control. Hosp. Epidemiol. 2016; 37 (27573805): 1288-1301
- The rise of the Enterococcus: beyond vancomycin resistance.Nat. Rev. Microbiol. 2012; 10 (22421879): 266-278
- Studies on antibiotic syngerism against enterococci. II. Effect of various antibiotics on the uptake of 14C-labeled streptomycin by enterococci.J. Clin. Invest. 1971; 50 (5001959): 2580-2584
- Penicillin-streptomycin treatment of enterococcal endocarditis: a re-evaluation.N. Engl. J. Med. 1966; 274 (5908873): 710-715
- Studies on the mechanism of intrinsic resistance to β-lactam antibiotics in group D streptococci.J. Gen. Microbiol. 1983; 129 (6409985): 813-822
- One or two low affinity penicillin-binding proteins may be responsible for the range of susceptibility of Enterococcus faecium to benzylpenicillin.J. Gen. Microbiol. 1985; 131 (3850924): 1933-1940
- Methicillin-resistant staphylococci.Clin. Microbiol. Rev. 1988; 1 (3069195): 173-186
- Serine β-lactamases and penicillin-binding proteins.Annu. Rev. Microbiol. 1991; 45 (1741619): 37-67
- Impact of specific pbp5 mutations on expression of β-lactam resistance in Enterococcus faecium.Antimicrob. Agents Chemother. 2004; 48 (15273117): 3028-3032
- Structural and regulatory changes in PBP4 trigger decreased β-lactam susceptibility in Enterococcus faecalis.MBio. 2018; 9 (29615500): e00318-e00361
- The 2.4-Å crystal structure of the penicillin-resistant penicillin-binding protein PBP5fm from Enterococcus faecium in complex with benzylpenicillin.Cell Mol. Life Sci. 2002; 59 (12222968): 1223-1232
- Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus.Nat. Struct. Biol. 2002; 9 (12389036): 870-876
- Synthesis of mosaic peptidoglycan cross-bridges by hybrid peptidoglycan assembly pathways in Gram-positive bacteria.J. Biol. Chem. 2004; 279 (15280360): 41546-41556
- Resistance to β-lactam antibiotics in Streptococcus faecium.Antimicrob. Agents Chemother. 1982; 22 (6927638): 295-301
- High-level fluorescence labeling of Gram-positive pathogens.PLoS One. 2011; 6 (21731607)e19822
- Dali server update.Nucleic Acids Res. 2016; 44 (27131377): W351-W355
- Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli.Microbiol. Mol. Biol. Rev. 1998; 62 (9529891): 181-203
- Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes.FEMS Microbiol. Rev. 2006; 30 (16911039): 673-691
- Crystal structures of penicillin-binding protein 3 in complexes with azlocillin and cefoperazone in both acylated and deacylated forms.FEBS Lett. 2016; 590 (26823174): 288-297
- Structural basis of an N-degron adaptor with more stringent specificity.Structure. 2016; 24 (26805523): 232-242
- Penicillin-binding proteins and β-lactam resistance.FEMS Microbiol. Rev. 2008; 32 (18248419): 361-385
- The role of the β5-α11 loop in the active-site dynamics of acylated penicillin-binding protein A from Mycobacterium tuberculosis.J. Mol. Biol. 2012; 418 (22365933): 316-330
- Crystal structure of cefditoren complexed with Streptococcus pneumoniae penicillin-binding protein 2X: structural basis for its high antimicrobial activity.Antimicrob. Agents Chemother. 2007; 51 (17724158): 3902-3907
- How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (24085846): 16808-16813
- Penicillin-binding proteins: evergreen drug targets.Curr. Opin. Pharmacol. 2014; 18 (25450065): 112-119
- Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost.Protein Expr. Purif. 2007; 51 (16904906): 1-10
- High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density.J. Struct. Biol. 2015; 191 (26027487): 49-58
- XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124692): 125-132
- AutoXDS.Stanford University, Stanford, CA2010
- PHENIX: a comprehensive Python-based system for macromolecular structure solution.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124702): 213-221
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20383002): 486-501
- The PyMOL Molecular Graphics System.(version 1.5.0.1) Schroedinger, LLC, New York2012
Article info
Publication history
Footnotes
This work was supported by National Institutes of Health Grant R56AI045626 (to L. B. R. and W. P.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains Tables S1–S4 and Figs. S1 and S2.
The atomic coordinates and structure factors (codes 6BSQ, 6BSR, 6MKA, 6MKF, 6MKG, 6MKH, 6MKI, and 6MKJ) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy