Introduction

- Xu L.Q.
- Wu S.
- Buell A.K.
- Cohen S.I.
- Chen L.J.
- Hu W.H.
- Cusack S.A.
- Itzhaki L.S.
- Zhang H.
- Knowles T.P.
- Dobson C.M.
- Welland M.E.
- Jones G.W.
- Perrett S.
- Xu L.Q.
- Wu S.
- Buell A.K.
- Cohen S.I.
- Chen L.J.
- Hu W.H.
- Cusack S.A.
- Itzhaki L.S.
- Zhang H.
- Knowles T.P.
- Dobson C.M.
- Welland M.E.
- Jones G.W.
- Perrett S.
Results
The C-terminal GGAP motif of Ssa1 directly binds to Ure2
- Xu L.Q.
- Wu S.
- Buell A.K.
- Cohen S.I.
- Chen L.J.
- Hu W.H.
- Cusack S.A.
- Itzhaki L.S.
- Zhang H.
- Knowles T.P.
- Dobson C.M.
- Welland M.E.
- Jones G.W.
- Perrett S.
SBDα(523–622) | SBDβ(382–554) | |
---|---|---|
Distance restraints | ||
Intraresidue | 715 | 1169 |
Sequential | 451 | 693 |
Medium | 321 | 310 |
Long-range | 144 | 839 |
Ambiguous | 800 | 1887 |
Total | 2431 | 4898 |
Hydrogen-bond restraints | 108 | 100 |
Dihedral-angle restraints | ||
φ | 83 | 115 |
ψ | 83 | 122 |
χ1 | 66 | |
Total | 166 | 303 |
Violations | ||
NOE violations (>0.3 Å) | 0 | 0 |
Torsion angle violations (>5°) | 0 | 0 |
PROCHECK statistics (%) | ||
Most favored regions | 96.5 | 89.1 |
Additional allowed regions | 3.0 | 9.1 |
Generously allowed regions | 0.2 | 0.8 |
Disallowed regions | 0.3 | 1.0 |
Root-mean-square deviation from mean structure (Å) | ||
Backbone heavy atoms | ||
All residue | 0.64 ± 0.10 | 0.82 ± 0.10 |
Regular secondary structure | 0.56 ± 0.12 | 0.56 ± 0.09 |
All heavy atoms | ||
All residue | 1.09 ± 0.08 | 1.28 ± 0.09 |
Regular secondary structure | 1.03 ± 0.09 | 0.94 ± 0.09 |


Blocking of the Ssa1 substrate site upon truncation of the α-helical bundle
- Xu L.Q.
- Wu S.
- Buell A.K.
- Cohen S.I.
- Chen L.J.
- Hu W.H.
- Cusack S.A.
- Itzhaki L.S.
- Zhang H.
- Knowles T.P.
- Dobson C.M.
- Welland M.E.
- Jones G.W.
- Perrett S.
- Xu L.Q.
- Wu S.
- Buell A.K.
- Cohen S.I.
- Chen L.J.
- Hu W.H.
- Cusack S.A.
- Itzhaki L.S.
- Zhang H.
- Knowles T.P.
- Dobson C.M.
- Welland M.E.
- Jones G.W.
- Perrett S.

- Xu L.Q.
- Wu S.
- Buell A.K.
- Cohen S.I.
- Chen L.J.
- Hu W.H.
- Cusack S.A.
- Itzhaki L.S.
- Zhang H.
- Knowles T.P.
- Dobson C.M.
- Welland M.E.
- Jones G.W.
- Perrett S.
The α-helical bundle of Hsp70 enhances inhibition of fibril formation
The GGAP motif contributes to the stress response of yeast

Discussion
Query sequence (× 3) | GGAP | GGVP | GGMP | GGFP | GGPP | GGAS | EGAP | GEAP |
---|---|---|---|---|---|---|---|---|
Total number of protein clusters | 81 | 34 | 162 | 51 | 500 | 12 | 62 | 7 |
Clusters with known function | 23 | 20 | 82 | 26 | 137 | 3 | 13 | 5 |
Experimental procedures
Plasmids and yeast strains
Protein expression and purification
- Xu L.Q.
- Wu S.
- Buell A.K.
- Cohen S.I.
- Chen L.J.
- Hu W.H.
- Cusack S.A.
- Itzhaki L.S.
- Zhang H.
- Knowles T.P.
- Dobson C.M.
- Welland M.E.
- Jones G.W.
- Perrett S.
NMR spectroscopy
Structure calculations
- Brünger A.T.
- Adams P.D.
- Clore G.M.
- DeLano W.L.
- Gros P.
- Grosse-Kunstleve R.W.
- Jiang J.S.
- Kuszewski J.
- Nilges M.
- Pannu N.S.
- Read R.J.
- Rice L.M.
- Simonson T.
- Warren G.L.
NMR titration
In vitro amyloid fibril formation
- Xu L.Q.
- Wu S.
- Buell A.K.
- Cohen S.I.
- Chen L.J.
- Hu W.H.
- Cusack S.A.
- Itzhaki L.S.
- Zhang H.
- Knowles T.P.
- Dobson C.M.
- Welland M.E.
- Jones G.W.
- Perrett S.
FRET
where E represents the FRET efficiency, and F(D) and F(DA) represent the donor fluorescence in the absence or the presence of Cy5–Ssa1. The donor fluorescence intensity was calculated as an average from 565 to 575 nm. The FRET efficiencies were plotted against Cy5–Ssa1 concentrations and fitted to the following formula to obtain the dissociation constant KD,
where E is the FRET efficiency, x is the Cy5–Ssa1 concentration, and a and b are constants.
Yeast growth assay
Acquired thermotolerance assay
Monitoring the presence of the prion phenotype in S. cerevisiae
Immunoblotting
Author contributions
Acknowledgments
Supplementary Material
References
- Molecular chaperone functions in protein folding and proteostasis.Annu. Rev. Biochem. 2013; 82 (23746257): 323-355
- How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions.J. Mol. Biol. 2015; 427 (25683596): 1575-1588
- Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate.Proc. Natl. Acad. Sci. U.S.A. 2009; 106 (19439666): 8471-8476
- Allostery in the Hsp70 chaperone proteins.Top. Curr. Chem. 2013; 328 (22576356): 99-153
- Dynamical structures of Hsp70 and Hsp70–Hsp40 complexes.Structure. 2016; 24 (27345933): 1014-1030
- Crystal structure of the stress-inducible human heat shock protein 70 substrate-binding domain in complex with peptide substrate.PLoS One. 2014; 9 (25058147)e103518
- Insights into the molecular mechanism of allostery in Hsp70s.Front. Mol. Biosci. 2015; 2 (26539440): 58
- The β6/β7 region of the Hsp70 substrate-binding domain mediates heat-shock response and prion propagation.Cell Mol. Life Sci. 2018; 75 (29124308): 1445-1459
- Hsp70 chaperone dynamics and molecular mechanism.Trends Biochem. Sci. 2013; 38 (24012426): 507-514
- The C-terminal helices of heat shock protein 70 are essential for J-domain binding and ATPase activation.J. Biol. Chem. 2012; 287 (22219199): 6044-6052
- Conserved, disordered C terminus of DnaK enhances cellular survival upon stress and DnaK in vitro chaperone activity.J. Biol. Chem. 2011; 286 (21768118): 31821-31829
- Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1.J. Mol. Biol. 2015; 427 (25687964): 1632-1643
- Crystal structure of yeast Sis1 peptide-binding fragment and Hsp70 Ssa1 C-terminal complex.Biochem. J. 2006; 398 (16737444): 353-360
- Hsc70 protein interaction with soluble and fibrillar α-synuclein.J. Biol. Chem. 2011; 286 (21832061): 34690-34699
- Heat shock protein 70 inhibits α-synuclein fibril formation via interactions with diverse intermediates.J. Mol. Biol. 2006; 364 (17010992): 323-336
- Influence of specific HSP70 domains on fibril formation of the yeast prion protein Ure2.Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013; 368 (23530260)20110410
- [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae.Science. 1994; 264 (7909170): 566-569
- The yeast prion protein Ure2: structure, function and folding.Biochim. Biophys. Acta. 2006; 1764 (16427819): 535-545
- The ribosome-bound Hsp70 homolog Ssb of Saccharomyces cerevisiae.Biochim. Biophys. Acta. 2010; 1803 (20226819): 662-672
- Folding of newly translated proteins in vivo: the role of molecular chaperones.Annu. Rev. Biochem. 2001; 70 (11395418): 603-647
- The refolding activity of the yeast heat shock proteins Ssa1 and Ssa2 defines their role in protein translocation.J. Cell Biol. 1996; 135 (8947547): 1229-1237
- Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly.Science. 1990; 248 (2188360): 850-854
- Molecular chaperones and the assembly of the prion Ure2p in vitro.J. Biol. Chem. 2008; 283 (18400756): 15732-15739
- Molecular chaperones and the assembly of the prion Sup35p, an in vitro study.EMBO J. 2006; 25 (16467849): 822-833
- Structural analysis of substrate binding by the molecular chaperone DnaK.Science. 1996; 272 (8658133): 1606-1614
- Solution structure of a yeast ubiquitin-like protein Smt3: the role of structurally less defined sequences in protein-protein recognitions.Protein Sci. 2002; 11 (12021447): 1482-1491
- Identification of a SUMO-binding motif that recognizes SUMO-modified proteins.Proc. Natl. Acad. Sci. U.S.A. 2004; 101 (15388847): 14373-14378
- Resonance assignments for the substrate binding domain of Hsp70 chaperone Ssa1 from Saccharomyces cerevisiae.Biomol. NMR Assign. 2015; 9 (25682100): 329-332
- Multistep mechanism of substrate binding determines chaperone activity of Hsp70.Nat. Struct. Biol. 2000; 7 (10876246): 586-593
- Mechanics of Hsp70 chaperones enables differential interaction with client proteins.Nat. Struct. Mol. Biol. 2011; 18 (21278757): 345-351
- Substrate discrimination of the chaperone BiP by autonomous and cochaperone-regulated conformational transitions.Nat. Struct. Mol. Biol. 2011; 18 (21217698): 150-158
- Structural insights into substrate binding by the molecular chaperone DnaK.Nat. Struct. Biol. 2000; 7 (10742174): 298-303
- Induction of distinct [URE3] yeast prion strains.Mol. Cell Biol. 2001; 21 (11564886): 7035-7046
- Saccharomyces cerevisiae Hsp70 mutations affect [PSI+] prion propagation and cell growth differently and implicate Hsp40 and tetratricopeptide repeat cochaperones in impairment of [PSI+].Genetics. 2003; 163 (12618389): 495-506
- Antagonistic interactions between yeast [PSI(+)] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssa1p but not by Ssa2p.Mol. Cell Biol. 2002; 22 (11997496): 3590-3598
- Different combinations of the heat-shock cognate protein 70 (hsc70) C-terminal functional groups are utilized to interact with distinct tetratricopeptide repeat-containing proteins.Biochem. J. 2001; 359 (10.1042/0264-6021:3590419 11583590): 419-426
- The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors.Mol. Cell Biol. 1998; 18 (9528774): 2023-2028
- Sequencing and expression pattern of inducible heat shock gene products in the European flat oyster, Ostrea edulis.Gene. 2005; 361 (16185825): 119-126
- Molecular cloning and characterization of a heat shock protein 70 gene in swimming crab (Portunus trituberculatus).Fish Shellfish Immunol. 2010; 28 (19815077): 56-64
- Effect of environmental impact to molecular expression of heat-shock protein (HSP70) in oyster Crassostrea gigas from Gamak bay, Korea.J. Environ. Biol. 2012; 33 (23029911): 609-615
- Molecular cloning and expression analysis of a cytosolic heat shock protein 70 gene from mud crab Scylla serrata.Fish Shellfish Immunol. 2013; 34 (23481212): 1306-1314
- Gene sequence and transcription differences in 70 kDa heat shock protein correlate with murine virulence of Toxoplasma gondii.Int. J. Parasitol. 1998; 28 (9724875): 1041-1051
- Coordination of translational control and protein homeostasis during severe heat stress.Curr. Biol. 2013; 23 (24291094): 2452-2462
- Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules.Elife. 2015; 4 (26238190)e06807
- Stress-triggered phase separation is an adaptive, evolutionarily tuned response.Cell. 2017; 168 (28283059): 1028-1040.e19
- In vivo bipartite interaction between the Hsp40 Sis1 and Hsp70 in Saccharomyces cerevisiae.Genetics. 2005; 169 (15687271): 1873-1882
- Functionality of class A and class B J-protein co-chaperones with Hsp70.FEBS Lett. 2015; 589 (26247431): 2825-2830
- Propagation of Saccharomyces cerevisiae [PSI+] prion is impaired by factors that regulate Hsp70 substrate binding.Mol. Cell Biol. 2004; 24 (15082786): 3928-3937
- Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1.EMBO J. 1995; 14 (7774586): 2281-2292
- Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae.J. Biol. Chem. 2005; 280 (15590687): 4102-4110
- Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses.J. Biol. Chem. 2004; 279 (15166219): 32262-32268
- Important role of SUMOylation of Spliceosome factors in prostate cancer cells.J. Proteome Res. 2014; 13 (25027693): 3571-3582
- The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition.Nat. Rev. Mol. Cell Biol. 2010; 11 (21102611): 861-871
- Functionally redundant isoforms of a yeast Hsp70 chaperone subfamily have different antiprion effects.Genetics. 2008; 179 (18562668): 1301-1311
- Glutathionylation of the bacterial Hsp70 chaperone DnaK provides a link between oxidative stress and the heat shock response.J. Biol. Chem. 2016; 291 (26823468): 6967-6981
- Equilibrium folding properties of the yeast prion protein determinant Ure2.J. Mol. Biol. 1999; 290 (10388576): 331-345
- Hsp40 interacts directly with the native state of the yeast prion protein Ure2 and inhibits formation of amyloid-like fibrils.J. Biol. Chem. 2007; 282 (17324933): 11931-11940
- NMRPipe: a multidimensional spectral processing system based on UNIX pipes.J. Biomol. NMR. 1995; 6 (8520220): 277-293
- NMRView: a computer program for visualization and analysis of NMR data.J. Biomol. NMR. 1994; 4 (22911360): 603-614
- Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation.Biochemistry. 1994; 33 (7514039): 5984-6003
- Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA.J. Mol. Biol. 2002; 319 (12051947): 209-227
- Crystallography & NMR system: a new software suite for macromolecular structure determination.Acta Crystallogr. D Biol. Crystallogr. 1998; 54 (9757107): 905-921
- SANE (structure assisted NOE evaluation): an automated model-based approach for NOE assignment.J. Biomol. NMR. 2001; 19 (11370778): 321-329
- Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks.J. Biomol. NMR. 2013; 56 (23728592): 227-241
- RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank.Proteins. 2005; 59 (15822098): 662-672
- AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR.J. Biomol. NMR. 1996; 8 (9008363): 477-486
- MOLMOL: a program for display and analysis of macromolecular structures.J. Mol. Graph. 1996; 14 (29–32) (8744573): 51-55
- The PyMOL User's Manual.Delano Scientific, San Carlos, CA2002
Article info
Publication history
Footnotes
This work was supported by National Key R&D Program of China Grant 2017YFA0504000; National Natural Science Foundation of China Grants 31570780, 31200578, 31470747, 31770829, 31300631, and 21673278; Beijing Natural Science Foundation Grant 5172026; funds from the National Laboratory of Biomacromolecules and the Chinese Academy of Sciences Centre of Excellence in Biomacromolecules; a John and Pat Hume Ph.D. scholarship from Maynooth University (to L. X.); and Science Foundation Ireland Grant SFI/13/ISCA/2845 (to the G. W. J. laboratory). The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Figs. S1–S4.
The atomic coordinates and structure factors (codes 5Z8Q and 5Z8I) have been deposited in the Protein Data Bank (http://wwpdb.org/).
The chemical shifts (accession number 36162) have been deposited in the BioMagResBank database.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy