Introduction
- Bharti S.K.
- Sommers J.A.
- Zhou J.
- Kaplan D.L.
- Spelbrink J.N.
- Mergny J.L.
- Brosh Jr., R.M.
Results
Quadruplex structure and stability vary with sequence and salt
c-MYC Tm | hTEL Tm | |
---|---|---|
°C | ||
50 mm K+ | 81 | 53 |
50 mm Na+ | 66 | 36 |
Physiological salt | >90 | 66 |
- Hatzakis E.
- Okamoto K.
- Yang D.

Telomeric G4DNA is destabilized during preincubation with the enzyme


Measurement of the rate of unfolding of telomeric G4DNA by Pif1

The rate of ATP hydrolysis by Pif1 is reduced on G4DNA relative to ssDNA

Pif1 unfolds hTEL G4DNA more slowly but traverses more nucleotides relative to dsDNA


Increasing length ssDNA overhangs result in increased G4DNA unfolding by Pif1

Discussion
Experimental procedures
Oligonucleotides and protein
CD
G4DNA unfolding by trapping
Excess enzyme reporter assay for G4DNA unfolding
Pre-steady state rapid mixing reporter assay for G4DNA unfolding
ATP hydrolysis
Author contributions
Supplementary Material
References
- DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential.Nat. Rev. Mol. Cell Biol. 2017; 18 (28225080): 279-284
- G4-associated human diseases.EMBO Rep. 2015; 16 (26150098): 910-922
- G-quadruplexes and their regulatory roles in biology.Nucleic Acids Res. 2015; 43 (26350216): 8627-8637
- Quadruplex nucleic acids as novel therapeutic targets.J. Med. Chem. 2016; 59 (26840940): 5987-6011
- Potassium physiology.Am. J. Med. 1986; 80 (3706350,): 3-7
- Quantitative visualization of DNA G-quadruplex structures in human cells.Nat. Chem. 2013; 5 (23422559): 182-186
- Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues.PLoS One. 2014; 9 (25033211)e102711
- Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells.Nat. Chem. 2014; 6 (24345950): 75-80
- G-quadruplex structures are stable and detectable in human genomic DNA.Nat. Commun. 2013; 4 (23653208)1796
- Direct evidence of mitochondrial G-quadruplex DNA by using fluorescent anti-cancer agents.Nucleic Acids Res. 2015; 43 (26487635): 10102-10113
- Small-molecule-induced DNA damage identifies alternative DNA structures in human genes.Nat. Chem. Biol. 2012; 8 (22306580): 301-310
- A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop.Nucleic Acids Res. 2012; 40 (22965135): 10334-10344
- Gene function correlates with potential for G4 DNA formation in the human genome.Nucleic Acids Res. 2006; 34 (16914419): 3887-3896
- DNA and RNA quadruplex-binding proteins.Int. J. Mol. Sci. 2014; 15 (25268620): 17493-17517
- Folding and unfolding pathways of the human telomeric G-quadruplex.J. Mol. Biol. 2014; 426 (24487181): 1629-1650
- Pif1 family helicases suppress genome instability at G-quadruplex motifs.Nature. 2013; 497 (23657261): 458-462
- The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo.PLoS Genet. 2009; 5 (19424434)e1000475
- PIF1 family DNA helicases suppress R-loop mediated genome instability at tRNA genes.Nat. Commun. 2017; 8 (28429714)15025
- Epigenetic instability due to defective replication of structured DNA.Mol. Cell. 2010; 40 (21145480): 703-713
- FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA.Nucleic Acids Res. 2012; 40 (22021381): 1485-1498
- DNA sequences proximal to human mitochondrial DNA deletion breakpoints prevalent in human disease form G-quadruplexes, a class of DNA structures inefficiently unwound by the mitochondrial replicative Twinkle helicase.J. Biol. Chem. 2014; 289 (25193669): 29975-29993
- Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints.BMC Genomics. 2014; 15 (25124333): 677
- An appraisal of human mitochondrial DNA instability: new insights into the role of non-canonical DNA structures and sequence motifs.PLoS One. 2013; 8 (23555828)e59907
- RuvA and RuvB proteins of Escherichia coli exhibit DNA helicase activity in vitro.Proc. Natl. Acad. Sci. U.S.A. 1993; 90 (8433990): 1315-1319
- Reverse branch migration of Holliday junctions by RecG protein: a new mechanism for resolution of intermediates in recombination and DNA repair.Cell. 1993; 75 (8402917): 341-350
- Human DHX9 helicase unwinds triple-helical DNA structures.Biochemistry. 2010; 49 (20669935): 6992-6999
- A distinct triplex DNA unwinding activity of ChlR1 helicase.J. Biol. Chem. 2015; 290 (25561740): 5174-5189
- G-quadruplexes and helicases.Nucleic Acids Res. 2016; 44 (26883636): 1989-2006
- G-quadruplex unwinding helicases and their function in vivo.Biochem. Soc. Trans. 2017; 45 (28939694): 1173-1182
- The Bloom's syndrome helicase unwinds G4 DNA.J. Biol. Chem. 1998; 273 (9765292): 27587-27592
- Human werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n.J. Biol. Chem. 1999; 274 (10212265): 12797-12802
- FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability.Mol. Cell. Biol. 2008; 28 (18426915): 4116-4128
- FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C tracts.J. Biol. Chem. 2008; 283 (18978354): 36132-36139
- Getting it done at the ends: Pif1 family DNA helicases and telomeres.DNA Repair. 2016; 44 (27233114): 151-158
- Structure and function of Pif1 helicase.Biochem. Soc. Trans. 2017; 45 (28900015): 1159-1171
- DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase.Cell. 2011; 145 (21620135): 678-691
- Pif1-family helicases cooperatively suppress widespread replication-fork arrest at tRNA genes.Nat. Struct. Mol. Biol. 2017; 24 (27991904): 162-170
- Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers.Nat. Commun. 2015; 6 (26563448)8909
- The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation.Cell. 1994; 76 (8287473): 145-155
- Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase δ.Mol. Cell. Biol. 2006; 26 (16537895): 2490-2500
- Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping.EMBO J. 2010; 29 (21045806): 4020-4034
- A PIF-dependent recombinogenic signal in the mitochondrial DNA of yeast.EMBO J. 1985; 4 (16453651): 3525-3530
- Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration.Nature. 2013; 502 (24025768): 393-396
- Migrating bubble during break-induced replication drives conservative DNA synthesis.Nature. 2013; 502 (24025772): 389-392
- Periodic DNA patrolling underlies diverse functions of Pif1 on R-loops and G-rich DNA.Elife. 2014; 3 (24843019)e02190
- Molecular mechanism of G-quadruplex unwinding helicase: sequential and repetitive unfolding of G-quadruplex by Pif1 helicase.Biochem. J. 2015; 466 (25471447): 189-199
- A parallel quadruplex DNA is bound tightly but unfolded slowly by pif1 helicase.J. Biol. Chem. 2015; 290 (25589786): 6482-6494
- Multiple Pif1 helicases are required to sequentially disrupt G-quadruplex structure and unwind duplex DNA.Biochem. Biophys. Res. Commun. 2016; 473 (27079238): 1235-1239
- Crystal structures of the BsPif1 helicase reveal that a major movement of the 2B SH3 domain is required for DNA unwinding.Nucleic Acids Res. 2016; 44 (26809678): 2949-2961
- G-quadruplex and G-rich sequence stimulate Pif1p-catalyzed downstream duplex DNA unwinding through reducing waiting time at ss/dsDNA junction.Nucleic Acids Res. 2016; 44 (27471032): 8385-8394
- Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter: implications for G-quadruplex stabilization.Biochemistry. 2005; 44 (15697230): 2048-2058
- Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription.Proc. Natl. Acad. Sci. U.S.A. 2002; 99 (12195017): 11593-11598
- The dynamic character of the G-quadruplex element in the c-MYC promoter and modification by TMPyP4.J. Am. Chem. Soc. 2004; 126 (15250722): 8702-8709
- Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution.Nucleic Acids Res. 2006; 34 (16714449): 2723-2735
- G-quadruplexes significantly stimulate Pif1 helicase-catalyzed duplex DNA unwinding.J. Biol. Chem. 2015; 290 (25627683): 7722-7735
- Insights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase.Nucleic Acids Res. 2018; 46 (29202194): 1486-1500
- A fluorescence-based helicase assay: application to the screening of G-quadruplex ligands.Nucleic Acids Res. 2015; 43 (25765657): e71
- Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+ solution.Nucleic Acids Res. 2006; 34 (17040899): 5715-5719
- Kinetics of unfolding the human telomeric DNA quadruplex using a PNA trap.J. Am. Chem. Soc. 2003; 125 (12656607): 3763-3767
- Folding and misfolding pathways of G-quadruplex DNA.Nucleic Acids Res. 2016; 44 (27924036): 10999-11012
- Replication protein A unfolds G-quadruplex structures with varying degrees of efficiency.J. Phys. Chem. B. 2012; 116 (22500657): 5588-5594
- PIF1 DNA helicase from Saccharomyces cerevisiae: biochemical characterization of the enzyme.J. Biol. Chem. 1993; 268 (8253734): 26155-26161
- Yeast Pif1 helicase exhibits a one-base pair stepping mechanism for unwinding duplex DNA.J. Biol. Chem. 2013; 288 (23596008): 16185-16195
- A monomer of Pif1 unwinds double-stranded DNA and it is regulated by the nature of the non-translocating strand at the 3′-end.J. Mol. Biol. 2016; 428 (26908222): 1053-1067
- Intermediates revealed in the kinetic mechanism for DNA unwinding by a monomeric helicase.Nat. Struct. Mol. Biol. 2006; 13 (16474403): 242-249
- General methods for analysis of sequential “n-step” kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding.Biophys. J. 2003; 85 (14507688): 2224-2239
- DNA unwinding step-size of E. coli RecBCD helicase determined from single turnover chemical quenched-flow kinetic studies.J. Mol. Biol. 2002; 324 (12445778): 409-428
- An oligomeric form of E. coli UvrD is required for optimal helicase activity.J. Mol. Biol. 1999; 293 (10543970): 815-834
- Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase.Science. 1997; 275 (8994032): 377-380
- The functional interaction of the hepatitis C virus helicase molecules is responsible for unwinding processivity.J. Biol. Chem. 2004; 279 (15087464): 26005-26012
- Protein displacement by an assembly of helicase molecules aligned along single-stranded DNA.Nat. Struct. Mol. Biol. 2004; 11 (15146172): 531-538
- Increasing the length of the single-stranded overhang enhances unwinding of duplex DNA by bacteriophage T4 Dda helicase.Biochemistry. 2005; 44 (16185067): 12990-12997
- Displacement of a DNA binding protein by Dda helicase.Nucleic Acids Res. 2006; 34 (16738140): 3020-3029
- Single-molecule visualization of RecQ helicase reveals DNA melting, nucleation, and assembly are required for processive DNA unwinding.Proc. Natl. Acad. Sci. U.S.A. 2015; 112 (26540728): E6852-E6861
- Active and passive mechanisms of helicases.Nucleic Acids Res. 2010; 38 (20423906): 5518-5526
- Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy.Nucleic Acids Res. 2013; 41 (23303789): 2746-2755
- The G-quadruplex (G4) resolvase DHX36 efficiently and specifically disrupts DNA G4s via a translocation-based helicase mechanism.J. Biol. Chem. 2018; 293 (29269411): 1924-1932
- Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism.Cell. 1999; 97 (10199404): 75-84
- Kinetic mechanism for DNA unwinding by multiple molecules of Dda helicase aligned on DNA.Biochemistry. 2010; 49 (20408588): 4543-4553
- Yeast helicase Pif1 unwinds RNA:DNA hybrids with higher processivity than DNA:DNA duplexes.J. Biol. Chem. 2016; 291 (26733194): 5889-5901
- Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed.Biochemistry. 2000; 39 (10625495): 205-212
- Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36.Nature. 2018; 558 (29899445): 465-469
- DNA binding induces dimerization of Saccharomyces cerevisiae Pif1.Biochemistry. 2010; 49 (20795654): 8445-8454
- Preparation and use of synthetic oligoribonucleotides as tools for study of viral polymerases.Methods Enzymol. 1996; 275 (9026650): 365-382
- Global Kinetic Explorer: a new computer program for dynamic simulation and fitting of kinetic data.Anal. Biochem. 2009; 387 (19154726): 20-29
- Thermodynamic stability and folding kinetics of the major G-quadruplex and its loop isomers formed in the nuclease hypersensitive element in the human c-Myc promoter: effect of loops and flanking segments on the stability of parallel-stranded intramolecular G-quadruplexes.Biochemistry. 2010; 49 (20849082): 9152-9160
- Effects of salt on the stability of a G-quadruplex from the human c-MYC promoter.Biochemistry. 2015; 54 (25984914): 3420-3430
- Effect of ions on the polymorphism, effective charge, and stability of human telomeric DNA: photon correlation spectroscopy and circular dichroism studies.J. Phys. Chem. B. 2005; 109 (16851398): 3594-3605
Article info
Publication history
Footnotes
This work was supported by Grant R35GM122601 (to K. D. R.) from the National Institutes of Health, NIGMS. The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains Table S1 and Figs. S1–S3.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy