Introduction
Results
Subcellular localization of NPAS4 in COS-7 and Neuro 2a cells


The bHLH domain of NPAS4 possesses both NLS and NES motifs

Detection of cellular localization signals in the PAS domains of NPAS4

Detection of localization signals in the C-terminal NPAS4 fragment

The hierarchy of the cellular localization signals in NPAS4

Discussion

Experimental procedures
Plasmid construction
Cell culture and DNA transfection
Electrophoresis and Western blot analysis
Microscopy imaging
In silico analysis of the NPAS4 sequence
- Steentoft C.
- Vakhrushev S.Y.
- Joshi H.J.
- Kong Y.
- Vester-Christensen M.B.
- Schjoldager K.T.
- Lavrsen K.
- Dabelsteen S.
- Pedersen N.B.
- Marcos-Silva L.
- Gupta R.
- Bennett E.P.
- Mandel U.
- Brunak S.
- Wandall H.H.
- Levery S.B.
- Clausen H.
Author contributions
Acknowledgments
Supplementary Material
References
- Identification of a novel basic helix-loop-helix-PAS factor, NXF, reveals a Sim2 competitive, positive regulatory role in dendritic-cytoskeleton modulator drebrin gene expression.Mol. Cell. Biol. 2004; 24 (14701734): 608-616
- LE-PAS, a novel Arnt-dependent HLH-PAS protein, is expressed in limbic tissues and transactivates the CNS midline enhancer element.Mol. Brain Res. 2004; 128 (15363889): 141-149
- bHLH-PAS proteins: Functional specification through modular domain architecture.OA Biochemistry. 2013; 1: 16
- The mammalian basic helix-loop-helix/PAS family of transcriptional regulators.Int. J. Biochem. Cell Biol. 2004; 36 (14643885): 189-204
- NPAS1-ARNT and NPAS3-ARNT crystal structures implicate the bHLH-PAS family as multi-ligand binding transcription factors.eLife. 2016; 5 (27782878): e18790
- Characterization of functional heterodimer partners in brain for a bHLH-PAS factor NXF.Biochim. Biophys. Acta. 2009; 1789 (19284974): 192-197
- Npas4 is a novel activity-regulated cytoprotective factor in pancreatic β-cells.Diabetes. 2013; 62 (23656887): 2808-2820
- The neuronal transcription factor NPAS4 is a strong inducer of sprouting angiogenesis and tipcell formation.Cardiovasc. Res. 2017; 113 (28082451): 222-233
- Hippocampal expression of aryl hydrocarbon receptor nuclear translocator 2 and neuronal PAS domain protein 4 in a rat model of depression.Neurol. Sci. 2014; 35 (23861074): 277-282
- The role of the neuroprotective factor Npas4 in cerebral ischemia.Int. J. Mol. Sci. 2015; 16 (26690124): 29011-29028
- All-encomPASsing regulation of β-cells: PAS domain proteins in β-cell dysfunction and diabetes.Trends Endocrinol. Metab. 2015; 26 (25500169): 49-57
- Npas4 transcription factor expression is regulated by calcium signaling pathways and prevents tacrolimus-induced cytotoxicity in pancreatic beta cells.J. Biol. Chem. 2016; 291 (26663079): 2682-2695
- NPAS4 facilitates the autophagic clearance of endogenous Tau in rat cortical neurons.J. Mol. Neurosci. 2016; 58 (26635026): 401-410
- Intracellular localization and nucleocytoplasmic trafficking of steroid receptors: An overview.Mol. Cell. Endocrinol. 2006; 246 (16388893): 147-156
- Nucleocytoplasmic shuttling of transcription factors.Cell. Mol. Life Sci. 2000; 57 (11028912): 1193-1206
- Classical nuclear localization signals: Definition, function, and interaction with importin alpha.J. Biol. Chem. 2007; 282 (17170104): 5101-5105
- Nuclear export signals and the fast track to the cytoplasm.Cell. 1995; 82 (7634321): 341-344
- Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1.Exp. Cell Res. 1998; 242 (9683540): 540-547
- Nuclear export inhibition through covalent conjugation and hydrolysis of leptomycin B by CRM1.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (23297231): 1303-1308
- Npas4, a novel helix-loop-helix PAS domain protein, is regulated in response to cerebral ischemia.Eur. J. Neurosci. 2006; 24 (17156197): 2705-2720
- MAGED1 is a novel regulator of a select subset of bHLH PAS transcription factors.FEBS J. 2016; 283 (27472814): 3488-3502
- Green fluorescent protein as a marker for gene expression.Science. 1994; 263 (8303295): 802-805
- Fluorescent proteins and their applications in imaging living cells and tissues. 2010; 90 (20664080): 1103-1163
- Human variants in the neuronal basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) transcription factor complex NPAS4/ARNT2 disrupt function.PloS One. 2014; 9 (24465693): e85768
- Controlling protein compartmentalization to overcome disease.Pharm. Res. 2007; 24 (16969692): 17-27
- Protein localization in disease and therapy.J. Cell Sci. 2011; 124 (22010196): 3381-3392
- The dioxin (aryl hydrocarbon) receptor as a model for adaptive responses of bHLH/PAS transcription factors.FEBS Lett. 2007; 581 (17459381): 3616-3625
- NPAS2: A gas-responsive transcription factor.Science. 2002; 298 (12446832): 2385-2387
- Signaling states of a short blue-light photoreceptor protein PpSB1-LOV revealed from crystal structures and solution NMR spectroscopy.J. Mol. Biol. 2016; 428 (27291287): 3721-3736
- Nine-amino-acid transactivation domain: Establishment and prediction utilities.Genomics. 2007; 89 (17467953): 756-768
- A computational strategy for the prediction of functional linear peptide motifs in proteins.Bioinformatics. 2007; 23 (17977881): 3297-3303
- Regulation of protein transport to the nucleus: Central role of phosphorylation.Physiol. Rev. 1996; 76 (8757785): 651-685
- Reduction of the neuroprotective transcription factor Npas4 results in increased neuronal necrosis, inflammation and brain lesion size following ischaemia.J. Cereb. Blood Flow Metab. 2016; 36 (26661154): 1449-1463
- Regulation of primary response genes.Mol. Cell. 2011; 44 (22055182): 348-360
- Effect of protein synthesis inhibitors on growth factor activation of c-fos, c-myc, and actin gene transcription.Mol. Cell. Biol. 1986; 6 (2431274): 1050-1057
- Activity-dependent regulation of inhibitory synapse development by Npas4.Nature. 2008; 455 (18815592): 1198-1204
- Npas4 regulates Mdm2 and thus Dcx in experience-dependent dendritic spine development of newborn olfactory bulb interneurons.Cell Rep. 2014; 8 (25088421): 843-857
- Signal transduction in hypoxic cells: Inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1α.EMBO J. 1998; 17 (9822602): 6573-6586
- Identification of cis-elements and transcription factors regulating neuronal activity-dependent transcription of human BDNF gene.J. Neurosci. 2011; 31 (21368041): 3295-3308
- A nuclear localization signal of human aryl hydrocarbon receptor nuclear translocator/hypoxia-inducible factor 1β is a novel bipartite type recognized by the two components of nuclear pore-targeting complex.J. Biol. Chem. 1997; 272 (9211913): 17640-17647
- Hyperglycemic stress and carbon stress in diabetic glucotoxicity.Aging Dis. 2016; 7 (26816666): 90-110
- A rapid and efficient PCR-based mutagenesis method applicable to cell physiology study.Am. J. Physiol. Cell Physiol. 2005; 288 (15659713): C1273-C1278
- Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature. 1970; 227 (5432063): 680-685
- Mapping of the sequences directing localization of the Drosophila germ cell-expressed protein (GCE).PloS One. 2015; 10 (26186223): e0133307
- Protein secondary structure prediction based on position-specific scoring matrices.J. Mol. Biol. 1999; 292 (10493868): 195-202
- SMART, a simple modular architecture research tool: Identification of signaling domains.Proc. Natl. Acad. Sci. U.S.A. 1998; 95 (9600884): 5857-5864
- The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res. 1997; 25 (9396791): 4876-4882
- NucPred: Predicting nuclear localization of proteins.Bioinformatics. 2007; 23 (17332022): 1159-1160
- PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization.Trends Biochem. Sci. 1999; 24 (10087920): 34-36
- NLStradamus: A simple hidden Markov model for nuclear localization signal prediction.BMC Bioinformatics. 2009; 10 (19563654): 202
- Characterization and prediction of protein nucleolar localization sequences.Nucleic Acids Res. 2010; 38 (20663773): 7388-7399
- NoD: A nucleolar localization sequence detector for eukaryotic and viral proteins.BMC Bioinformatics. 2011; 12 (21812952): 317
- Analysis and prediction of leucine-rich nuclear export signals.Protein Eng. Des. Sel. 2004; 17 (15314210): 527-536
- Prediction of leucine-rich nuclear export signal containing proteins with NESsential.Nucleic Acids Res. 2011; 39 (21705415): e111
- LocNES: A computational tool for locating classical NESs in CRM1 cargo proteins.Bioinformatics. 2015; 31 (25515756): 1357-1365
- KinasePhos 2.0: A Web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns.Nucleic Acids Res. 2007; 35 (17517770): W588-94
- Predicting intrinsic disorder from amino acid sequence.Proteins. 2003; 53 (14579347): 566-572
- Optimizing long intrinsic disorder predictors with protein evolutionary information.J. Bioinform. Comput. Biol. 2005; 3 (15751111): 35-60
- The Phyre2 Web portal for protein modeling, prediction and analysis.Nat. Protoc. 2015; 10 (25950237): 845-858
- 3DLigandSite: Predicting ligand-binding sites using similar structures.Nucleic Acids Res. 2010; 38 (20513649): W469-W473
- Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology.EMBO J. 2013; 32 (23584533): 1478-1488
- PredHydroxy: Computational prediction of protein hydroxylation site locations based on the primary structure.Mol. BioSyst. 2015; 11 (25534958): 819-825
- Characterization and prediction of protein nucleolar localization sequences.Nucleic Acids Res. 2010; 38 (20663773): 7388-7399
- NoD: A nucleolar localization sequence detector for eukaryotic and viral proteins.BMC Bioinformatics. 2011; 12 (21812952): 317
Article info
Publication history
Footnotes
This work was supported by a statutory activity subsidy from The Polish Ministry of Science and High Education for the Faculty of Chemistry of Wrocław University of Science and Technology and Wrocław Centre of Biotechnology, programme The Leading National Research Centre (KNOW) for years 2014–2018. This publication was supported by the Wrocław Centre of Biotechnology, programme The Leading National Research Centre (KNOW) for years 2014–2018. The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Figs. S1–S10.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy