Introduction
Results
Identification and in silico analysis of transketolases within Enterobacteriaceae

Transketolase expression in S. Typhimurium shows partial growth phase and RpoS regulation

Transketolase-deficient S. Typhimurium can grow with glucose, but not ribose, as the sole carbon source

Each of the three transketolase isoenzymes in S. Typhimurium demonstrates enzymatic activity in cell extracts

Ectopic expression of any S. Typhimurium transketolase isoenzyme complements Tkt0

Determining transketolase kinetics from purified recombinant enzyme
Reaction substrates | Vmax | Km | kcat | kcat/Km |
---|---|---|---|---|
μm NADH consumed/s | μm | s−1 | m−1 s−1 | |
Transketolase A | ||||
Excess X5P | ||||
R5P | 992 ± 60 | 730 ± 110 | 9.54 × 104 | 1.31 × 108 |
E4P | 1079 ± 97 | 99 ± 20 | 1.04 × 105 | 1.05 × 109 |
Excess R5P | ||||
X5P | 1362 ± 42 | 270 ± 30 | 1.31 × 105 | 4.77 × 108 |
Excess E4P | ||||
X5P | 743 ± 36 | 170 ± 30 | 7.14 × 104 | 4.22 × 108 |
Transketolase B | ||||
Excess X5P | ||||
R5P | 690 ± 25 | 660 ± 60 | 6.71 × 104 | 1.02 × 108 |
E4P | 888 ± 57 | 82 ± 10 | 8.65 × 104 | 1.06 × 109 |
Excess R5P | ||||
X5P | 806 ± 25 | 290 ± 30 | 7.85 × 104 | 2.69 × 108 |
Excess E4P | ||||
X5P | 539 ± 33 | 180 ± 40 | 5.25 × 104 | 2.99 × 108 |
Transketolase C* | ||||
Excess X5P | ||||
R5P | 15.5 ± 1.1 | 58 ± 14 | 1.35 × 103 | 2.32 × 107 |
E4P | 16.0 ± 0.7 | 23 ± 4 | 1.39 × 103 | 6.07 × 107 |
Excess R5P | ||||
X5P | 9.4 ± 0.5 | 75 ± 18 | 8.16 × 102 | 1.08 × 107 |
Excess E4P | ||||
X5P | 7.8 ± 0.3 | 120 ± 15 | 6.71 × 102 | 5.58 × 106 |



Transketolase-deficient (Tkt0) Salmonella are avirulent in mice

Discussion
Experimental procedures
Classification of transketolase domains
- Marchler-Bauer A.
- Lu S.
- Anderson J.B.
- Chitsaz F.
- Derbyshire M.K.
- DeWeese-Scott C.
- Fong J.H.
- Geer L.Y.
- Geer R.C.
- Gonzales N.R.
- Gwadz M.
- Hurwitz D.I.
- Jackson J.D.
- Ke Z.
- Lanczycki C.J.
- et al.
Bacterial strains and plasmids
Bacterial growth
Gene expression
Western blotting
Transketolase activity assays
Enzyme purification
Mouse infections
Statistical analysis
Author contributions
Supplementary Material
References
- Salmonella serovars and their host specificity.J. Vet. Sci. Anim. Husb. 2013; 1: 301
- Global burden of invasive nontyphoidal Salmonella disease, 2010.Emerg. Infect. Dis. 2015; 21 (25860298): 941
- Global genomic epidemiology of Salmonella enterica serovar Typhimurium DT104.Appl. Environ. Microbiol. 2016; 82 (26944846): 2516-2526
- Glucose 6-phosphate dehydrogenase is required for Salmonella Typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates.Infect. Immun. 1999; 67 (9864251): 436-438
- Control of redox balance by the stringent response regulatory protein promotes antioxidant defenses of Salmonella.J. Biol. Chem. 2010; 285 (20851888): 36785-36793
- Flavohemoglobin Hmp protects Salmonella enterica serovar Typhimurium from nitric oxide-related killing by human macrophages.Infect. Immun. 2002; 70 (12117950): 4399-4405
- Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella Typhimurium model.Proc. Natl. Acad. Sci. U.S.A. 1995; 92 (7604003): 6399-6403
- Regulation of Salmonella resistance to oxidative and nitrosative stress.in: Regulation of Bacterial Virulence. American Society of Microbiology, Washington, D. C.2013: 425-440
- Physiological functions of the pentose phosphate pathway.Cell Biochem. Funct. 1986; 4 (3539386): 241-247
- Glycolysis, pentose phosphate pathway, and Enter–Doudoroff pathway.in: Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D. C.1987
- Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12.Arch. Microbiol. 1995; 164 (8572885): 324-330
- The oxidative pentose phosphate pathway: structure and organisation.Curr. Opin. Plant Biol. 2003; 6 (12753973): 236-246
- Transketolase A of Escherichia coli K12. Purification and properties of the enzyme from recombinant strains..Eur. J. Biochem. 1995; 230 (7607225): 525-532
- The return of metabolism: biochemistry and physiology of the pentose phosphate pathway.Biol. Rev. 2015; 90 (25243985): 927-963
- Mechanism of action of transketolase I: properties of the crystalline yeast enzyme.J. Biol. Chem. 1961; 236 (13719876): 617-623
- Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 Å resolution.EMBO J. 1992; 11 (1628611): 2373-2379
- Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella Typhimurium.Proc. Natl. Acad. Sci. U.S.A. 1971; 68 (4942911): 1673-1677
- Transketolase mutants of Escherichia coli.J. Bacteriol. 1969; 100 (4902809): 1289-1295
- Short-term signatures of evolutionary change in the Salmonella enterica serovar Typhimurium 14028 genome.J. Bacteriol. 2010; 192 (19897643): 560-567
- Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology.Sci. Rep. 2017; 7 (28874689): 10480
- SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information.Nucleic Acids Res. 2014; 42 (24782522): W252-W258
- The SWISS-MODEL Repository: new features and functionality.Nucleic Acids Res. 2017; 45 (27899672): D313-D319
- RpoS-mediated growth-dependent expression of the Escherichia coli tkt genes encoding transketolases isoenzymes.Curr. Microbiol. 2005; 50 (15968503): 314-318
- Identification of RpoS (ςS)-regulated genes in Salmonella enterica serovar Typhimurium.J. Bacteriol. 2000; 182 (11004173): 5749-5756
- Stress and survival of aging Escherichia coli rpoS colonies.Genetics. 2004; 168 (15454563): 541-546
- Strength and regulation of seven rRNA promoters in Escherichia coli.PLoS One. 2015; 10 (26717514): e0144697
- An Escherichia coli K-12 tktA tktB mutant deficient in transketolase activity requires pyridoxine (vitamin B6) as well as the aromatic amino acids and vitamins for growth.J. Bacteriol. 1994; 176 (7928977): 6134-6138
- Dissimilatory pathways for sugars, polyols, and carboxylates.in: Escherichia coli and Salmonella: Cellular and Molecular Biology. 2nd Ed. American Society for Microbiology Press, Washington, D. C.1996: 307-342
- Control of RpoS in global gene expression of Escherichia coli in minimal media.Mol. Genet. Genomics. 2009; 281 (18843507): 19-33
- Global effect of RpoS on gene expression in pathogenic Escherichia coli O157: H7 strain EDL933.BMC Genomics. 2009; 10 (19650909): 349
- Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12.Mol. Genet. Genomics. 2004; 272 (15558318): 580-591
- Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity.J. Bacteriol. 2005; 187 (15716429): 1591-1603
- σS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of σS-dependent genes and identification of their promoter sequences.J. Bacteriol. 2004; 186 (15489429): 7186-7195
- Stationary phase in Gram-negative bacteria.FEMS Microbiol. Rev. 2010; 34 (20236330): 476-495
- Starvation-induced cross protection against osmotic challenge in Escherichia coli.J. Bacteriol. 1990; 172 (2185233): 2779-2781
- Responses to nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection, cell shape, and macromolecular content.J. Bacteriol. 1994; 176 (8282712): 7-14
- rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157: H7.Appl. Environ. Microbiol. 1996; 62 (8633882): 1822-1824
- Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH.J. Bacteriol. 1994; 176 (8132468): 1729-1737
- Role of Escherichia coli rpoS and associated genes in defense against oxidative damage.Free Radic. Biol. Med. 1996; 21 (8937883): 975-993
- The alternative sigma factor katF (rpoS) regulates Salmonella virulence.Proc. Natl. Acad. Sci. U.S.A. 1992; 89 (1465428): 11978-11982
- Identification and characterization of the tktB gene encoding a second transketolase in Escherichia coli K-12.J. Bacteriol. 1993; 175 (8396116): 5375-5383
- Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus.BMC Microbiol. 2014; 14 (24405865): 7
- Cellular concentrations of enzymes and their substrates.J. Theor. Biol. 1990; 143 (2200929): 163-195
- Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion.J. Bacteriol. 2003; 185 (12486059): 221-230
- Proteomic analysis of defense response of wildtype Arabidopsis thaliana and plants with impaired NO-homeostasis.Proteomics. 2011; 11 (21462345): 1664-1683
- In vivo protein tyrosine nitration in Arabidopsis thaliana.J. Exp. Bot. 2011; 62 (21378116): 3501-3517
- Proteomic identification of S-nitrosylated proteins in Arabidopsis.Plant Physiol. 2005; 137 (15734904): 921-930
- The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response.Antioxid. Redox Signal. 2011; 15 (21348809): 311-324
- CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.Nucleic Acids Res. 2017; 45 (27899674): D200-D203
- CDD: NCBI's conserved domain database.Nucleic Acids Res. 2015; 43 (25414356): D222-D226
- CDD: a conserved domain database for the functional annotation of proteins.Nucleic Acids Res. 2010; 39 (21109532): D225-D229
- CD-Search: protein domain annotations on the fly.Nucleic Acids Res. 2004; 32 (15215404): W327-W331
- One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.Proc. Natl. Acad. Sci. U.S.A. 2000; 97 (10829079): 6640-6645
- Analyzing real-time PCR data by the comparative CT method.Nat. Protoc. 2008; 3 (18546601): 1101-1108
- Purification and characterization of, and preparation of an antibody to, transketolase from human red blood cells.Biochim. Biophys. Acta. 1986; 872 (3089282): 24-32
- Limit of blank, limit of detection and limit of quantitation.Clin. Biochem. Rev. 2008; 29 (18852857): S49-S52
- Methods for the determination of limit of detection and limit of quantitation of the analytical methods.Chron. Young Sci. 2011; 2: 21-25
Article info
Publication history
Footnotes
This work was supported by Veterans Affairs Merit Grant BX0002073, National Institutes of Health (NIH) Project AI54959, NIH Institutional Training Grant AI052066, and NIGMS, NIH, Grant GM103427. The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains Tables S1–S7 and Figs. S1–S12.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy