Introduction


Results
Alkylphenol-based anesthetics selectively impair kinesin-1 and kinesin-2 run-length potential
Alkylphenol-based anesthetics bind specifically to the kinesin-1 and kinesin-2 motor domains in the presence of AMPPNP
Kinesin | MT–kinesin (Ø) | MT–kinesin + AMPPNP | |||
---|---|---|---|---|---|
− Propofol | + Propofol | − Propofol | + Propofol | ||
dpm/(OD × mm2) | dpm/(OD × mm2) | dpm/(OD × mm2) | |||
K439 | 185.8 ± 39.25 | 304.3 ± 64.96 | 271.8 ± 50.78 | 702.8 ± 100.6 | 345.1 ± 61.33 |
KIF3AB | 146.7 ± 25.18 | 165.9 ± 39.55 | 179.7 ± 32.0 | 458.2 ± 104.9 | 195.1 ± 44.82 |
KIF3AC | 154.5 ± 37.39 | 197.7 ± 35.49 | 232 ± 43.76 | 559.6 ± 97.62 | 221.6 ± 38.94 |
Microtubule | MT–kinesin (Ø) | MT–kinesin + AMPPNP | |||
---|---|---|---|---|---|
− Propofol | + Propofol | − Propofol | + Propofol | ||
dpm/(OD × mm2) | dpm/(OD × mm2) | dpm/(OD × mm2) | |||
Tubulin (K439) | 106.4 ± 37.25 | 129.8 ± 49.51 | 152.6 ± 46.4 | 174.1 ± 73.09 | 216.2 ± 59.21 |
Tubulin (KIF3AB) | 88.97 ± 24.0 | 154.6 ± 28.2 | 178.9 ± 12.9 | 297.4 ± 48.07 | 185.5 ± 50.5 |
Tubulin (KIF3AC) | 65.1 ± 17.19 | 103.7 ± 29.95 | 151.1 ± 50.2 | 148.6 ± 22.66 | 137 ± 28.5 |
Alkylphenol-based anesthetic-binding sites within the K439, KIF3B, and KIF3C catalytic motor head domains

AMPPNP-dependent formation of propofol-binding sites common between kinesin motor domains

Additional kinesin-specific alkylphenol-based anesthetic binding sites

Discussion
Experimental procedures
Kinesin-1 K439 cloning and expression
Kinesin-2 KIF3 cloning and expression
Purification of kinesin dimers
Single molecule motility assays
TIRF microscopy and image acquisition
Data analysis
where A is the maximum amplitude and l is the mean run length reported ± S.E. The first bin of run-length histograms was masked from the fit due to the resolution limit of the TIRF microscope (<0.25 μm).
Preparation of microtubules for photoaffinity labeling
Photoaffinity radiolabeling
Photoaffinity labeling for microsequencing
Mass spectrometry
Mass spectrometry analysis
Binding site prediction and docking
Statistics
Author contributions
Supplementary Material
References
- The cellular mechanisms that maintain neuronal polarity.Nat. Rev. Neurosci. 2016; 17 (27511065): 611-622
- Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease.Neuron. 2010; 68 (21092854): 610-638
- Axonal transport: cargo-specific mechanisms of motility and regulation.Neuron. 2014; 84 (25374356): 292-309
- Kinesin superfamily motor proteins and intracellular transport.Nat. Rev. Mol. Cell Biol. 2009; 10 (19773780): 682-696
- All kinesin superfamily protein, KIF, genes in mouse and human.Proc. Natl. Acad. Sci. U.S.A. 2001; 98 (11416179): 7004-7011
- Vesicular fast axonal transport rates in young and old rat axons.Brain Res. 1993; 628 (8313149): 209-217
- Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons.Mol. Biol. Cell. 2000; 11 (10749925): 1213-1224
- Axonal transport of the cytoplasmic matrix.J. Cell Biol. 1984; 99 (6378920): 212s-221s
- Retrograde transport by the microtubule-associated protein MAP 1C.Nature. 1987; 330 (3670402): 181-183
- MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties.J. Cell Biol. 1987; 105 (2958482): 1273-1282
- Integrated regulation of motor-driven organelle transport by scaffolding proteins.Trends Cell Biol. 2014; 24 (24953741): 564-574
- Kinesin assembly and movement in cells.Annu. Rev. Biophys. 2011; 40 (21332353): 267-288
- The crystal structure of dimeric kinesin and implications for microtubule-dependent motility.Cell. 1997; 91 (9428521): 985-994
- Crystal structure of the kinesin motor domain reveals a structural similarity to myosin.Nature. 1996; 380 (8606779): 550-555
- Kinesin family in murine central nervous system.J. Cell Biol. 1992; 119 (1447303): 1287-1296
- KIF3C and KIF3A form a novel neuronal heteromeric kinesin that associates with membrane vesicles.Mol. Biol. Cell. 1998; 9 (9487132): 637-652
- KIF3C, a novel member of the kinesin superfamily: sequence, expression, and mapping to human chromosome 2 at 2p23.Genomics. 1998; 47 (9480755): 405-408
- KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport.J. Cell Biol. 1995; 130 (7559760): 1387-1399
- Characterization of the KIF3C neural kinesin-like motor from mouse.Mol. Biol. Cell. 1998; 9 (9450952): 249-261
- Coupling of kinesin steps to ATP hydrolysis.Nature. 1997; 388 (9237758): 390-393
- Kinesin hydrolyses one ATP per 8-nm step.Nature. 1997; 388 (9237757): 386-390
- Direct observation of kinesin stepping by optical trapping interferometry.Nature. 1993; 365 (8413650): 721-727
- Kinesin moves by an asymmetric hand-over-hand mechanism.Science. 2003; 302 (14657506): 2130-2134
- Alternate fast and slow stepping of a heterodimeric kinesin molecule.Nat. Cell Biol. 2003; 5 (14634664): 1079-1082
- Kinesin walks hand-over-hand.Science. 2004; 303 (14684828): 676-678
- Common general anesthetic propofol impairs kinesin processivity.Proc. Natl. Acad. Sci. U.S.A. 2017; 144 (28484025): E4281-E4287
- A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia.PLoS ONE. 2010; 5 (20689589): e11903
- m-Azipropofol (AziPm) a photoactive analogue of the intravenous general anesthetic propofol.J. Med. Chem. 2010; 53 (20597506): 5667-5675
- The structure of apo-kinesin bound to tubulin links the nucleotide cycle to movement.Nat. Commun. 2014; 5 (25395082): 5364
- Structure of a kinesin-tubulin complex and implications for kinesin motility.Nat. Struct. Mol. Biol. 2013; 20 (23872990): 1001-1007
- Structural basis of cooperativity in kinesin revealed by 3D reconstruction of a two-head-bound state on microtubules.Elife. 2017;
- A structural change in the kinesin motor protein that drives motility.Nature. 1999; 402 (10617199): 778-784
- High-resolution structures of kinesin on microtubules provide a basis for nucleotide-gated force-generation.Elife. 2014; 3 (25415053): e04686
- Kinesin associates with anterogradely transported membranous organelles in vivo.J. Cell Biol. 1991; 114 (1712789): 295-302
- Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building.J. Cell Biol. 2000; 148 (10725338): 1255-1265
- Long-distance axonal transport of AAV9 is driven by dynein and kinesin-2 and is trafficked in a highly motile Rab7-positive compartment.Mol. Ther. 2014; 22 (24100640): 554-566
- Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport.Curr. Biol. 2010; 20 (20399099): 697-702
- Bead movement by single kinesin molecules studied with optical tweezers.Nature. 1990; 348 (2174512): 348-352
- Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP.Nature. 1985; 316 (4033761): 645-647
- Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility.Cell. 1985; 42 (3926325): 39-50
- Shedding light on anesthetic mechanisms: application of photoaffinity ligands.Anesth. Analg. 2016; 123 (27464974): 1253-1262
- Elsevier, New York1983 Photogenerated Reagents in Biochemistry and Molecular Biology, Laboratory Techniques in Biochemistry and Molecular Biology.
- Mechanisms revealed through general anesthetic photolabeling.Curr. Anesth. Rep. 2014; 4: 57-66
- Multiple propofol binding sites in a γ-aminobutyric acid type A receptor (GABAAR) identified using a photoreactive propofol analog.J. Biol. Chem. 2014; 289 (25086038): 27456-27468
- CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues.Nucleic Acids Res. 2006; 34 (16844972): W116-8
- AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem. 2010; 31 (19499576): 455-461
- Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance.Cell. 2010; 140 (20074521): 74-87
- Phenotypic spectrum of the tubulin-related disorders and functional implications of disease-causing mutations.Curr. Opin. Genet. Dev. 2011; 21 (21292473): 286-294
- β-Tubulin mutations that cause severe neuropathies disrupt axonal transport.EMBO J. 2013; 32 (23503589): 1352-1364
- Reversal of axonal growth defects in an extraocular fibrosis model by engineering the kinesin-microtubule interface.Nat. Commun. 2016; 7 (26775887): 10058
- Structural insights into a unique inhibitor binding pocket in kinesin spindle protein.J. Am. Chem. Soc. 2013; 135 (23305346): 2263-2272
- Inhibition of a mitotic motor protein: where, how, and conformational consequences.J. Mol. Biol. 2004; 335 (14672662): 547-554
- Antitumor activity of an allosteric inhibitor of centromere-associated protein-E.Proc. Natl. Acad. Sci. U.S.A. 2010; 107 (20167803): 5839-5844
- GABA(A) receptors as molecular targets of general anesthetics: identification of binding sites provides clues to allosteric modulation.Can. J. Anaesth. 2011; 58 (21194017): 206-215
- Propofol- An update of its use in anesthesia and counsious sedation.Drugs. 1995; 50 (8521772): 513-559
- Effect of intravenous anesthetic propofol on synaptic vesicle exocytosis at the frog neuromuscular junction.Acta Pharmacol. Sin. 2011; 32 (21113178): 31-37
- Anesthetics interfere with the polarization of developing cortical neurons.J. Neurosurg. Anesth. 2012; 24: 368-375
- Kinesin-2 KIF3AB exhibits novel ATPase characteristics.J. Biol. Chem. 2014; 289 (25122755): 27836-27848
- Kinesin-2 KIF3AC and KIF3AB can drive long-range transport along microtubules.Biophys. J. 2015; 109 (26445448): 1472-1482
- Schroedinger, LLC, New York2015 The PyMOL Molecular Graphics System version 1.8.
- AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility.J. Comput. Chem. 2009; 30 (19399780): 2785-2791
- ZINC: a free tool to discover chemistry for biology.J. Chem. Inf. Model. 2012; 52 (22587354): 1757-1768
- Photoaffinity ligand for the inhalational anesthetic sevoflurane allows mechanistic insight into potassium channel modulation.ACS Chem. Biol. 2017; 12 (28333442): 1353-1362
Article info
Publication history
Footnotes
This work was supported in part by National Institutes of Health Grants R37-GM054141 (to S. P. G.), P01-GM55876 (to R. G. E.), and GM110174 and AI118891 (to B. A. G.), and National Science Foundation Graduate Research Fellowship Program Grant DGE-1321851 (to K. A. W.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article contains Figs. S1–S14 and Tables S1 and S2.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy