Introduction

Results and discussion
Binding of ATP and magnesium repositions the two domains of AadA

Structures of AadA in complex with streptomycin and dihydrostreptomycin

Glu-87 as catalytic base of AadA

Structural mechanism of adenylation
Structure-based sequence analysis

Experimental validation of determinants for activity on streptomycin
AadA variant | Strain | MIC (μg ml−1) | |
---|---|---|---|
Streptomycin | Spectinomycin | ||
WT | DA6192 | 128 | 192 |
W173A | DA58246 | 12 | 192 |
D178A | DA52256 | 24 | 128 |

Docking and evaluation of spectinomycin binding to AadA

Concluding remarks
Experimental procedures
Protein expression and purification
Crystallization and structure determination
AadA–ATP | AadA(E87Q)–ATP–dhs | AadA(E87Q)–ATP–sry | AadA–ATP–sry | |
---|---|---|---|---|
Data collection | ||||
Beamline | ID29 | ID23-2 | ID23-2 | ID29 |
Wavelength | 0.972 | 0.873 | 0.873 | 1.074 |
Space group | P32 | P32 | P32 | P32 |
Unit cell parameters | ||||
a, b, c (Å) | 82.3, 82.3, 79.1 | 82.9, 82.9, 79.8 | 82.5, 82.5, 79.2 | 82.7, 82.7, 79.9 |
α, β, γ (°) | 90, 90, 120 | 90, 90, 120 | 90, 90, 120 | 90, 90, 120 |
Resolution (Å) | 36.52–1.90 (2.00–1.90) | 36.78–1.40 (1.50–1.40) | 36.58–1.73 (1.83–1.73) | 41.33–2.05 (2.10–2.05) |
Rmeas (%) | 15.4 (90.3) | 8.2 (75.7) | 17.1 (92.8) | 11.2 (178.4) |
〈I/σ(I)〉 | 13.6 (2.52) | 11.4 (2.14) | 5.22 (0.98) | 13.43 (1.33) |
CC1/2 (%), | 99.8 (90.3) | 99.8 (72.7) | 98.9 (27.3) | 99.9 (55.2) |
Completeness (%) | 96.9 (90.2) | 100 (100) | 97.0 (99.2) | 100 (99.9) |
Redundancy | 9.7 (9.1) | 5.2 (5.2) | 2.6 (2.6) | 10.3 (10.6) |
Refinement | ||||
Resolution (Å) | 36.52–1.9 | 36.78–1.40 | 36.57–1.73 | 41.34–2.05 |
Reflections/test set | 46,747/2,337 | 120,743/5,960 | 121,007/6,130 | 38,245/1,909 |
Rwork/Rfree (%) | 17.6/22.2 | 14.6/17.8 | 18.9/22.6 | 17.4/20.8 |
No. atoms | 4,925 | 5,377 | 5,039 | 4,544 |
Protein | 4,282 | 4,499 | 4,349 | 4,177 |
Ligand/ion | 113 | 166 | 168 | 174 |
Water | 530 | 712 | 522 | 193 |
B-factors | ||||
Protein | 31.2 | 21.6 | 29.2 | 50.1 |
Ligands | 32.8 | 19.5 | 29.8 | 60.7 |
Solvent | 38.6 | 31.1 | 35.3 | 45.2 |
r.m.s.d. from ideal | ||||
Bond lengths (Å) | 0.007 | 0.014 | 0.007 | 0.013 |
Bond angles (°) | 0.907 | 1.381 | 0.892 | 0.660 |
Ramachandran plot | ||||
Preferred (%) | 99.2 | 98.6 | 98.8 | 98.5 |
Allowed (%) | 0.6 | 1.38 | 1.2 | 1.5 |
Outliers (%) | 0.2 | 0 | 0 | 0 |
PDB code | 5g4a | 5lpa | 5luh | 6fzb |
Structure analysis
Construction of chromosomal aadA mutations in S. enterica
MIC determinations
Site-directed mutagenesis
Thermofluor assays
Molecular dynamics simulations
Sequence analysis
Malachite green assay
Chromatographic adenylation assay
Author contributions
Acknowledgments
Supplementary Material
References
- Versatility of aminoglycosides and prospects for their future.Clin. Microbiol. Rev. 2003; 16 (12857776): 430-450
- Ribosome-targeting antibiotics and mechanisms of bacterial resistance.Nat. Rev. Microbiol. 2014; 12 (24336183): 35-48
- Aminoglycoside antibiotics in the 21st century.ACS Chem. Biol. 2013; 8 (23110460): 105-115
- Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics.Nature. 2000; 407 (11014183): 340-348
- A steric block in translation caused by the antibiotic spectinomycin.ACS Chem. Biol. 2007; 2 (17696316): 545-552
- Do we still need the aminoglycosides?.Int. J. Antimicrob. Agents. 2009; 33 (18976888): 201-205
- Dihydrostreptomycine tegenaangewezen bij “lange” kuren. (Dihydrostreptomycin contraindicated in long courses of treatment.).Ned. Tijdschr. Geneeeskd. 1950; 94: 2129
- Bacterial resistance to aminoglycoside antibiotics.Trends Microbiol. 1997; 5 (9211644): 234-240
- Aminoglycoside modifying enzymes.Drug Resist. Updat. 2010; 13 (20833577): 151-171
- Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition.Drug Resist. Updat. 2001; 4 (11512519): 106-117
- Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase.Plasmid. 1985; 13 (2986186): 17-30
- Structure of AadA from Salmonella enterica: a monomeric aminoglycoside (3″)(9) adenyltransferase.Acta Crystallogr. D Biol. Crystallogr. 2015; 71 (26527143): 2267-2277
- Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity.Mol. Cell. 2006; 22 (16600865): 5-13
- Structural investigation of the antibiotic and ATP-binding sites in kanamycin nucleotidyltransferase.Biochemistry. 1995; 34 (7577914): 13305-13311
- H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations.Nucleic Acids Res. 2012; 40 (22570416): W537-W541
- Structure and mechanism of the lincosamide antibiotic adenylyltransferase LinB.Structure. 2009; 17 (20004168): 1649-1659
- Structural analysis of the tobramycin and gentamicin clinical resistome reveals limitations for next-generation aminoglycoside design.ACS Chem. Biol. 2016; 11 (26900880): 1339-1346
- Pfam: the protein families database.Nucleic Acids Res. 2014; 42 (24288371): D222-D230
- Detection of a streptomycin/spectinomycin adenylyltransferase gene (aadA) in Enterococcus faecalis.Antimicrob. Agents Chemother. 1999; 43 (9869582): 157-160
- Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes.Microbiol. Rev. 1993; 57 (8385262): 138-163
- Biophysical and enzymatic properties of aminoglycoside adenylyltransferase AadA6 from Pseudomonas aeruginosa.Biochem. Biophys. Rep. 2015; 4 (29124199): 152-157
- Characterization of the bifunctional aminoglycoside-modifying enzyme ANT(3″)-Ii/AAC(6′)-IId from Serratia marcescens.Biochemistry. 2006; 45 (16819836): 8368-8377
- Mosaic structure of a multiple-drug-resistant, conjugative plasmid from Campylobacter jejuni.Antimicrob. Agents Chemother. 2005; 49 (15917546): 2454-2459
- Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids.J. Am. Chem. Soc. 1996; 118: 11225-11236
- XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124692): 125-132
- How good are my data and what is the resolution?.Acta Crystallogr. D Biol. Crystallogr. 2013; 69 (23793146): 1204-1214
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40 (19461840): 658-674
- Towards automated crystallographic structure refinement with phenix. refine.Acta Crystallogr. D Biol. Crystallogr. 2012; 68 (22505256): 352-367
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20383002): 486-501
- Improved methods for finding protein models in electron density maps and the location of error in these models.Acta Crystallogr. A. 1991; 47 (2025413): 110-119
- Improvements in the analysis of domain motions in proteins from conformational change: DynDom version 1.50.J. Mol. Graph. Model. 2002; 21 (12463636): 181-183
- The interpretation of protein structures: estimation of static accessibility.J. Mol. Biol. 1971; 55 (5551392): 379-400
- Direct and inverted repeat stimulated excision (DIRex): simple, single-step, and scar-free mutagenesis of bacterial genes.PLoS One. 2017; 12 (28854250): e0184126
- Activation of cryptic aminoglycoside resistance in Salmonella enterica.Mol. Microbiol. 2011; 80 (21507083): 1464-1478
- The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability.Nat. Protoc. 2007; 2 (17853878): 2212-2221
- Scalable molecular dynamics with NAMD.J. Comput. Chem. 2005; 26 (16222654): 1781-1802
- Comparison of simple potential functions for simulating liquid water.J. Chem. Phys. 1983; 79: 926-935
- VMD: visual molecular dynamics.J. Mol. Graph. 1996; 14 (8744570): 33-38
- Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.Mol. Syst. Biol. 2011; 7 (21988835): 539
- The Jalview Java alignment editor.Bioinformatics. 2004; 20 (14960472): 426-427
- ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins.Nucleic Acids Res. 2003; 31 (12824317): 3320-3323
Article info
Publication history
Footnotes
This work was supported by Swedish Research Council Grants 2013-05930 and 2017-03827 and the Knut and Alice Wallenberg Foundation (RiboCORE) (to M. S.) and by funding from the European Community's Seventh Framework Programme (FP7/2007–2013) under BioStruct-X Grant Agreement 283570. The authors declare that they have no conflicts of interest with the contents of this article.
This article contains Figs. S1–S3 and Table S1.
The atomic coordinates and structure factors (codes 5g4a, 5lpa, 5luh, and 6fzb) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy