Introduction
- Lee K.M.
- Giltnane J.M.
- Balko J.M.
- Schwarz L.J.
- Guerrero-Zotano A.L.
- Hutchinson K.E.
- Nixon M.J.
- Estrada M.V.
- Sánchez V.
- Sanders M.E.
- Lee T.
- Gómez H.
- Lluch A.
- Pérez-Fidalgo J.A.
- Wolf M.M.
- et al.
Results and discussion
Myc regulation of mitochondrial metabolism
- Rodriguez-Bravo V.
- Pippa R.
- Song W.M.
- Carceles-Cordon M.
- Dominguez-Andres A.
- Fujiwara N.
- Woo J.
- Koh A.P.
- Ertel A.
- Lokareddy R.K.
- Cuesta-Dominguez A.
- Kim R.S.
- Rodriguez-Fernandez I.
- Li P.
- Gordon R.
- et al.

Control of mitochondrial protein folding by Myc
Mitochondrial chaperone TRAP1 is a novel Myc target gene

Myc–TRAP1 signaling fuels tumor chemotaxis and invasion

Pharmacologic targeting of Myc–TRAP1 for cancer therapy

- Rodriguez-Bravo V.
- Pippa R.
- Song W.M.
- Carceles-Cordon M.
- Dominguez-Andres A.
- Fujiwara N.
- Woo J.
- Koh A.P.
- Ertel A.
- Lokareddy R.K.
- Cuesta-Dominguez A.
- Kim R.S.
- Rodriguez-Fernandez I.
- Li P.
- Gordon R.
- et al.
Experimental procedures
Cells and cell culture
Antibodies and reagents
Plasmid and siRNA transfection
Chromatin immunoprecipitation (ChIP) assay
TRAP1 promoter analysis
Global metabolomics screening
Focused metabolite analysis
Mitochondrial protein folding
Mitochondrial bioenergetics
Cell viability assay and colony formation
Tumor cell motility and invasion
Bioinformatics analysis
Animal studies
Statistical analysis
Author contributions
Acknowledgments
Supplementary Material
Author Profile
Ekta Agarwal
References
- Hallmarks of cancer: the next generation.Cell. 2011; 144 (21376230): 646-674
- The Warburg effect: 80 years on.Biochem. Soc. Trans. 2016; 44 (27911732): 1499-1505
- Why do cancers have high aerobic glycolysis?.Nat. Rev. Cancer. 2004; 4 (15516961): 891-899
- Mitochondria and cancer.Cell. 2016; 166 (27471965): 555-566
- PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion.Proc. Natl. Acad. Sci. U.S.A. 2015; 112 (26124089): 8638-8643
- PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis.Nat. Cell Biol. 2014; 16 (1–15 25241037): 992-1003
- Metabolic plasticity as a determinant of tumor growth and metastasis.Cancer Res. 2016; 76 (27587539): 5201-5208
- MYC on the path to cancer.Cell. 2012; 149 (22464321): 22-35
- Comprehensive characterization of cancer driver genes and mutations.Cell. 2018; 173 (29625053): 371-385.e18
- Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis.Nature. 2014; 511 (25043028): 488-492
- Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles.Nature. 2014; 511 (25043018): 483-487
- c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells.Cell. 2012; 151 (23021216): 68-79
- MYC, metabolism, and cancer.Cancer Discov. 2015; 5 (26382145): 1024-1039
- MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation.Cell Metab. 2017; 26 (28978427): 633-647.e7
- Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis.Mol. Cell. Biol. 2005; 25 (15988031): 6225-6234
- Nuclear pores promote lethal prostate cancer by increasing POM121-driven E2F1, MYC, and AR nuclear import.Cell. 2018; 174 (30100187): 1200-1215.e20
- Landscape of the mitochondrial Hsp90 metabolome in tumours.Nat. Commun. 2013; 4 (23842546): 2139
- Hsp90 regulation of mitochondrial protein folding: from organelle integrity to cellular homeostasis.Cell. Mol. Life Sci. 2013; 70 (23052217): 2463-2472
- Metabolic stress regulates cytoskeletal dynamics and metastasis of cancer cells.J. Clin. Invest. 2013; 123 (23921130): 2907-2920
- Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network.Cell. 2007; 131 (17956728): 257-270
- Transgenic expression of the mitochondrial chaperone TNFR-associated protein 1 (TRAP1) accelerates prostate cancer development.J. Biol. Chem. 2016; 291 (27754870): 25247-25254
- Deletion of the mitochondrial chaperone TRAP-1 uncovers global reprogramming of metabolic networks.Cell Rep. 2014; 8 (25088416): 671-677
- The transcriptional program of a human B cell line in response to Myc.Nucleic Acids Res. 2001; 29 (11139609): 397-406
- Transcriptional amplification in tumor cells with elevated c-Myc.Cell. 2012; 151 (23021215): 56-67
- N-myc augments death and attenuates protective effects of Bcl-2 in trophically stressed neuroblastoma cells.Oncogene. 2008; 27 (18193081): 3424-3434
- Inhibition of a new differentiation pathway in neuroblastoma by copy number defects of N-myc, Cdc42, and nm23 genes.Cancer Res. 2005; 65 (15833843): 3136-3145
- MYC disrupts the circadian clock and metabolism in cancer cells.Cell Metab. 2015; 22 (26387865): 1009-1019
- Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles.Metabolomics. 2010; 6 (20300169): 78-95
- VANTED: a system for advanced data analysis and visualization in the context of biological networks.BMC Bioinformatics. 2006; 7 (16519817): 109
- Syntaphilin ubiquitination regulates mitochondrial dynamics and tumor cell movements.Cancer Res. 2018; 78 (29898993): 4215-4228
- The mitochondrial unfoldase-peptidase complex ClpXP controls bioenergetics stress and metastasis.PLoS Biol. 2016; 14 (27389535): e1002507
- A mitochondrial-targeted purine-based HSP90 antagonist for leukemia therapy.Oncotarget. 2017; 8 (29348817): 112184-112198
- Enhancer invasion shapes MYC N-dependent transcriptional amplification in neuroblastoma.Nat. Genet. 2018; 50 (29379199): 515-523
- Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.Genome Biol. 2009; 10 (19261174): R25
- 1000 Genome Project Data Processing Subgroup . The sequence alignment/map format and SAM tools.Bioinformatics. 2009; 25 (19505943): 2078-2079
- A neuronal network of mitochondrial dynamics regulates metastasis.Nat. Commun. 2016; 7 (27991488): 13730
- miRDB: an online resource for microRNA target prediction and functional annotations.Nucleic Acids Res. 2015; 43 (25378301): D146-D152
Article Info
Publication History
Footnotes
This work was supported by National Institutes of Health Grants P01 CA140043 (to D. C. A., D. W. S., L. R. L., and D. I. G.), R35 CA220446 (to D. C. A.), R50 CA221838 (to H.-Y. T.), R00 CA204593 (to B. J. A), and R50 CA211199 (to A. V. K.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
This article was selected as one of our Editors' Picks.
This article contains Figs. S1–S7.
Identification
Copyright
User License
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy