Introduction

Results
Crystal structure of the AFF4-CHD
AFF4-CHD has a unique fold
AFF4-CHD forms homodimers

CHDs of AFF4 and AFF1 form a heterodimer
AFF4-CHD interacts with nucleic acids

AFF4-CHD is phosphorylated by P-TEFb in vitro

Discussion
Experimental procedures
Preparation of the C-terminal dimerization domain of AFF4 (AFF4-CHD) and AFF1 (AFF1-CHD)
Crystal structure determination
Crystal | SeMet |
---|---|
Data collection | |
Space group | I2 (1)2 (1)2 (1) |
Unit cell dimensions (Å) | 41.53, 79.48, 185.44 |
Wavelength | 0.97925 |
Resolution (Å) | 50–2.2 (2.26–2.20) |
Rsym (%) | 8.5 (173.3%) |
I / σ (I) | 11.04 (1.11) |
CC (1/2) | 99.9 (66.3) |
Completeness (%) | 100.0 (100.0) |
Redundancy | 6.97 (6.85) |
Refinement | |
Resolution (Å) | 46.36–2.20 |
Unique reflections | 16,066 |
Rwork/Rfree (%) | 23.4/25.4 |
No. of atoms | |
Protein | 1811 |
Water | 42 |
Root mean square deviations | |
Bond lengths | 0.002 |
Bond angles | 0.460 |
Ramachandran plot (%) | |
Favored | 99.54 |
Allowed | 0.46 |
Disallowed | 0 |
Analytical gel filtration of AFF4-CHD and MBP–AFF1-CHD
Static light scattering
Fluorescence anisotropy
Phosphorylation assays of AFF4-CHD
Identification of the phosphorylation sites
Author contributions
Acknowledgments
Supplementary Material
References
- Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators.Genetics. 2011; 189 (22084422): 705-736
- Promoter proximal pausing and the control of gene expression.Curr. Opin. Genet. Dev. 2011; 21 (21324670): 231-235
- Structural basis of transcription initiation by RNA polymerase II.Nat. Rev. Mol. Cell Biol. 2015; 16 (25693126): 129-143
- Getting up to speed with transcription elongation by RNA polymerase II.Nat. Rev. Mol. Cell Biol. 2015; 16 (25693130): 167-177
- Structure of activated transcription complex Pol II–DSIF–PAF–SPT6.Nature. 2018; 560 (30135578): 607-612
- Structure of paused transcription complex Pol II–DSIF–NELF.Nature. 2018; 560 (30135580): 601-606
- New insights into the control of HIV-1 transcription: when Tat meets the 7SK snRNP and super elongation complex (SEC).J. Neuroimmune Pharmacol. 2011; 6 (21360054): 260-268
- AFF1 is a ubiquitous P-TEFb partner to enable Tat extraction of P-TEFb from 7SK snRNP and formation of SECs for HIV transactivation.Proc. Natl. Acad. Sci. U.S.A. 2014; 111 (24367103): E15-E24
- DDX6 transfers P-TEFb kinase to the AF4/AF4N (AFF1) super elongation complex.Am. J. Blood Res. 2016; 6 (27679741): 28-45
- The super elongation complex (SEC) family in transcriptional control.Nat. Rev. Mol. Cell Biol. 2012; 13 (22895430): 543-547
- HIV-1 Tat recruits transcription elongation factors dispersed along a flexible AFF4 scaffold.Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (23251033): E123-E131
- Building a super elongation complex for HIV.Elife. 2013; 2 (23538671): e00577
- AFF4 binding to Tat-P-TEFb indirectly stimulates TAR recognition of super elongation complexes at the HIV promoter.Elife. 2014; 3 (24843025): e02375
- Super elongation complex promotes early HIV transcription and its function is modulated by P-TEFb.Transcription. 2017; 8 (28340332): 133-149
- AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia.Mol. Cell. 2010; 37 (20159561): 429-437
- An RNA polymerase II elongation factor encoded by the human ELL gene.Science. 1996; 271 (8596958): 1873-1876
- Human polymerase-associated factor complex (PAFc) connects the super elongation complex (SEC) to RNA polymerase II on chromatin.Proc. Natl. Acad. Sci. U.S.A. 2011; 108 (21873227): E636-E645
- Structural basis for ELL2 and AFF4 activation of HIV-1 proviral transcription.Nat. Commun. 2017; 8 (28134250): 14076
- Structural mechanism for HIV-1 TAR loop recognition by Tat and the super elongation complex.Proc. Natl. Acad. Sci. U.S.A. 2018; 115 (30514815): 12973-12978
- The AFF4 scaffold binds human P-TEFb adjacent to HIV Tat.Elife. 2013; 2 (23471103): e00327
- Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding.Structure. 2013; 21 (23260655): 176-183
- Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4.Cell Cycle. 2014; 13 (24727379): 1788-1797
- Insights into HIV-1 proviral transcription from integrative structure and dynamics of the Tat:AFF4:P-TEFb:TAR complex.Elife. 2016; 5 (pii 27731797): e15910
- Functional characterization of the AFF (AF4/FMR2) family of RNA-binding proteins: insights into the molecular pathology of FRAXE intellectual disability.Hum. Mol. Genet. 2011; 20 (21330300): 1873-1885
- A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription.Cancer Cell. 2010; 17 (20153263): 198-212
- Gene target specificity of the super elongation complex (SEC) family: how HIV-1 Tat employs selected SEC members to activate viral transcription.Nucleic Acids Res. 2015; 43 (26007649): 5868-5879
- Protein secondary structure prediction based on position-specific scoring matrices.J. Mol. Biol. 1999; 292 (10493868): 195-202
- Scalable web services for the PSIPRED Protein Analysis Workbench.Nucleic Acids Res. 2013; 41 (23748958): W349-W357
- Dali server update.Nucleic Acids Res. 2016; 44 (27131377): W351-W355
- Molecular mechanism of APC/C activation by mitotic phosphorylation.Nature. 2016; 533 (27120157): 260-264
- 14-3-3 protein masks the nuclear localization sequence of caspase-2.FEBS J. 2018; 285 (30281929): 4196-4213
- An autoinhibited conformation of LGN reveals a distinct interaction mode between GoLoco motifs and TPR motifs.Structure. 2013; 21 (23665171): 1007-1017
- A thermodynamic model for multivalency in 14-3-3 protein–protein interactions.J. Am. Chem. Soc. 2018; 140 (30296824): 14498-14510
- TPRpred: a tool for prediction of TPR-, PPR- and SELI-like repeats from protein sequences.BMC Bioinformatics. 2007; 8 (17199898): 2
- A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core.J. Mol. Biol. 2018; 430 (29258817): 2237-2243
- Structural basis for protein-protein interactions in the 14–3-3 protein family.Proc. Natl. Acad. Sci. U.S.A. 2006; 103 (17085597): 17237-17242
- Structural basis of 14-3-3 protein functions.Semin. Cell Dev. Biol. 2011; 22 (21920446): 663-672
- Inference of macromolecular assemblies from crystalline state.J. Mol. Biol. 2007; 372 (17681537): 774-797
- Crystal contacts as nature's docking solutions.J. Comput Chem. 2010; 31 (19421996): 133-143
- Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle.Mol. Cell. 2008; 31 (18691976): 438-448
- Large-scale proteomics analysis of the human kinome.Mol. Cell. Proteomics. 2009; 8 (19369195): 1751-1764
- Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis.Sci. Signal. 2010; 3 (20068231): ra3
- Toward a comprehensive characterization of a human cancer cell phosphoproteome.J. Proteome Res. 2013; 12 (23186163): 260-271
- GPS: a comprehensive www server for phosphorylation sites prediction.Nucleic Acids Res. 2005; 33 (15980451): W184-W187
- GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy.Mol. Cell. Proteomics. 2008; 7 (18463090): 1598-1608
- GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection.Protein Eng. Des. Sel. 2011; 24 (21062758): 255-260
- Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition.Nat. Commun. 2012; 3 (22588304): 842
- Multiple P-TEFbs cooperatively regulate the release of promoter-proximally paused RNA polymerase II.Nucleic Acids Res. 2016; 44 (27353326): 6853-6867
- AF4 uses the SL1 components of RNAP1 machinery to initiate MLL fusion- and AEP-dependent transcription.Nat. Commun. 2015; 6
- MLL-rearranged leukemias: an update on science and clinical approaches.Front. Pediatr. 2017; 5 (28232907): 4
- A quantitative atlas of mitotic phosphorylation.Proc. Natl. Acad. Sci. U.S.A. 2008; 105 (18669648): 10762-10767
- Ligation-independent cloning of PCR products (LIC-PCR).Nucleic Acids Res. 1990; 18 (2235490): 6069-6074
- Minimal length requirement of the single-stranded tails for ligation-independent cloning (LIC) of PCR products.PCR Methods Appl. 1994; 4 (7580902): 172-177
- Preparation of selenomethionyl proteins for phase determination.Methods Enzymol. 1997; 276 (27799112): 523-530
- XDS. XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20124692): 125-132
- Assessing and maximizing data quality in macromolecular crystallography.Curr. Opin Struct. Biol. 2015; 34 (26209821): 60-68
- Experimental phasing with SHELXC/D/E: combining chain tracing with density modification.Acta Crystallogr. D. 2010; 66 (20383001): 479-485
- PHENIX: a comprehensive Python-based system for macromolecular structure solution.Acta Crystallogr. D. 2010; 66 (20124702): 213-221
- Coot: model-building tools for molecular graphics.Acta Crystallogr. D Biol. Crystallogr. 2004; 60 (15572765): 2126-2132
- MolProbity: all-atom structure validation for macromolecular crystallography.Acta Crystallogr. D Biol. Crystallogr. 2010; 66 (20057044): 12-21
- Architecture and RNA binding of the human negative elongation factor.Elife. 2016; 5 (pii 27282391): e14981
- Protein complex expression by using multigene baculoviral vectors.Nat. Methods. 2006; 3 (17117155): 1021-1032
- Baculovirus expression system for heterologous multiprotein complexes.Nat. Biotechnol. 2004; 22 (15568020): 1583-1587
- Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment.J. Proteome Res. 2011; 10 (21254760): 1794-1805
- Jalview version 2: a multiple sequence alignment editor and analysis workbench.Bioinformatics. 2009; 25 (19151095): 1189-1191
- Deciphering key features in protein structures with the new ENDscript server.Nucleic Acids Res. 2014; 42 (24753421): W320-W324
- Numerical-solution of the nonlinear Poisson–Boltzmann equation: developing more robust and efficient methods.J. Comput. Chem. 1995; 16 (10.1002/jcc.540160308): 337-364
- Multigrid solution of the nonlinear Poisson–Boltzmann equation and calculation of titration curves.Biophys. J. 1993; 65 (8369451): 48-55
Article info
Publication history
Footnotes
This work was supported by Deutsche Forschungsgemeinschaft Grants SFB860 and SPP1935, by European Research Council Advanced Investigator Grant TRANSREGULON under Agreement 693023, and by the Volkswagen Foundation (to P. C.). The authors declare that they have no conflicts of interest with the contents of this article.
The atomic coordinates and structure factors (code 6R80) have been deposited in the Protein Data Bank (http://wwpdb.org/).
This article contains Tables S1 and S2 and Figs. S1–S3.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy