Introduction
- Karkehabadi S.
- Helmich K.E.
- Kaper T.
- Hansson H.
- Mikkelsen N.E.
- Gudmundsson M.
- Piens K.
- Fujdala M.
- Banerjee G.
- Scott-Craig J.S.
- Walton J.D.
- Phillips Jr., G.N.
- Sandgren M.
- Quinlan R.J.
- Sweeney M.D.
- Lo Leggio L.
- Otten H.
- Poulsen J.C.
- Johansen K.S.
- Krogh K.B.
- Jørgensen C.I.
- Tovborg M.
- Anthonsen A.
- Tryfona T.
- Walter C.P.
- Dupree P.
- Xu F.
- Davies G.J.
- Walton P.H.
- Kleywegt G.J.
- Zou J.Y.
- Divne C.
- Davies G.J.
- Sinning I.
- Stâhlberg J.
- Reinikainen T.
- Srisodsuk M.
- Teeri T.T.
- Jones T.A.
- Quinlan R.J.
- Sweeney M.D.
- Lo Leggio L.
- Otten H.
- Poulsen J.C.
- Johansen K.S.
- Krogh K.B.
- Jørgensen C.I.
- Tovborg M.
- Anthonsen A.
- Tryfona T.
- Walter C.P.
- Dupree P.
- Xu F.
- Davies G.J.
- Walton P.H.
- Frandsen K.E.
- Simmons T.J.
- Dupree P.
- Poulsen J.C.
- Hemsworth G.R.
- Ciano L.
- Johnston E.M.
- Tovborg M.
- Johansen K.S.
- von Freiesleben P.
- Marmuse L.
- Fort S.
- Cottaz S.
- Driguez H.
- Henrissat B.
- et al.
- Harris P.V.
- Welner D.
- McFarland K.C.
- Re E.
- Navarro Poulsen J.C.
- Brown K.
- Salbo R.
- Ding H.
- Vlasenko E.
- Merino S.
- Xu F.
- Cherry J.
- Larsen S.
- Lo Leggio L.
- Wu M.
- Beckham G.T.
- Larsson A.M.
- Ishida T.
- Kim S.
- Payne C.M.
- Himmel M.E.
- Crowley M.F.
- Horn S.J.
- Westereng B.
- Igarashi K.
- Samejima M.
- Ståhlberg J.
- Eijsink V.G.
- Sandgren M.
Results and discussion
Removal of CBM and expression of HjLMPO9A-ΔCBM

Cellulose binding and activity of HjLPMO9A and HjLPMO9A-gmΔCBM

Activity profiles analyzed by HPAEC-PAD

Overall structure of H. jecorina LPMO9A
Data collection | ||
---|---|---|
PDB code | 5O2X | 5O2W |
Data collection | ||
Space group | P1211 | P1211 |
Unit cell parameters | a = 42.9 Å | a = 42.9 Å |
b = 61.6 Å | b = 62.1 Å | |
c = 47.8 Å | c = 48.0 Å | |
β = 112.1° | β = 111.8° | |
X-ray source | ID23–1, ESRF | ID23, ESRF |
Wavelength (Å) | 0.972425 | 0.87257 |
Resolution range (Å) | 44.3 − 0.95 | 44.6 – 1.78 |
Total No. of observations | ??? | 65,166 |
Unique reflections | 118,793 | 21,394 |
I/σ(I) | 14.1 (1.9) | 4.6 (1.6) |
Rmerge | 0.058 (0.47) | 0.24 (0.60) |
Multiplicity | 4.3 (1.5) | 4.3 (1.5) |
Structure refinement | ||
Resolution (Å) | 0.98 | 2.0 |
Rwork/Rfree (%) | 11.5/12.7 | 19.7/23.1 |
R.m.s. deviation for bond distances (Å) | 0.014 | 0.015 |
R.m.s. deviation for bond angles (°) | 1.832 | 1.76 |
No. of amino acid residues | 248 | 248 |
No. of water molecules | 372 | 343 |
No. of sugar residues | 17 | 17 |
Ramachandran plot | ||
Most favored regions (%) | 98.2 | 99.6 |
Outliers (%) | 1.8 | 0.4 |
Disallowed regions (%) | 0 | 0 |
Pyranose conformations (total/percentage) | ||
Lowest energy conformation | 17/100 | 17/100 |
Higher energy conformations | 0/0 | 0/0 |
- Harris P.V.
- Welner D.
- McFarland K.C.
- Re E.
- Navarro Poulsen J.C.
- Brown K.
- Salbo R.
- Ding H.
- Vlasenko E.
- Merino S.
- Xu F.
- Cherry J.
- Larsen S.
- Lo Leggio L.

- Quinlan R.J.
- Sweeney M.D.
- Lo Leggio L.
- Otten H.
- Poulsen J.C.
- Johansen K.S.
- Krogh K.B.
- Jørgensen C.I.
- Tovborg M.
- Anthonsen A.
- Tryfona T.
- Walter C.P.
- Dupree P.
- Xu F.
- Davies G.J.
- Walton P.H.
- Frandsen K.E.
- Simmons T.J.
- Dupree P.
- Poulsen J.C.
- Hemsworth G.R.
- Ciano L.
- Johnston E.M.
- Tovborg M.
- Johansen K.S.
- von Freiesleben P.
- Marmuse L.
- Fort S.
- Cottaz S.
- Driguez H.
- Henrissat B.
- et al.
- Quinlan R.J.
- Sweeney M.D.
- Lo Leggio L.
- Otten H.
- Poulsen J.C.
- Johansen K.S.
- Krogh K.B.
- Jørgensen C.I.
- Tovborg M.
- Anthonsen A.
- Tryfona T.
- Walter C.P.
- Dupree P.
- Xu F.
- Davies G.J.
- Walton P.H.


Spectroscopy
- Frandsen K.E.
- Simmons T.J.
- Dupree P.
- Poulsen J.C.
- Hemsworth G.R.
- Ciano L.
- Johnston E.M.
- Tovborg M.
- Johansen K.S.
- von Freiesleben P.
- Marmuse L.
- Fort S.
- Cottaz S.
- Driguez H.
- Henrissat B.
- et al.
- Kjaergaard C.H.
- Qayyum M.F.
- Wong S.D.
- Xu F.
- Hemsworth G.R.
- Walton D.J.
- Young N.A.
- Davies G.J.
- Walton P.H.
- Johansen K.S.
- Hodgson K.O.
- Hedman B.
- Solomon E.I.

gx | gy | gz | Ax | Ay | Az |
---|---|---|---|---|---|
×10−4 cm−1 | |||||
2.043 | 2.077 | 2.281 | 13.3 | 0.5 | 158.0 |
Bands | Abs | CD | MCD | Assignment |
---|---|---|---|---|
cm−1 | ||||
1 | 12,995 | 13,081 | 12,896 | dxz/yz → dx2-y2 |
2 | 13,975 | 13,952 | 13,892 | dxy → dx2-y2 |
3 | 15,633 | 15,626 | 15,857 | dxz/yz → d-x2-y2 |


Conclusions
Experimental procedures
Generation of full-length and truncated proteins
Protein purification
Protein crystallization, structure determination, and refinements
Avicel-binding assay
Phosphoric acid–swollen cellulose–activity assay
HPAEC-PAD product characterizations
- Wu M.
- Beckham G.T.
- Larsson A.M.
- Ishida T.
- Kim S.
- Payne C.M.
- Himmel M.E.
- Crowley M.F.
- Horn S.J.
- Westereng B.
- Igarashi K.
- Samejima M.
- Ståhlberg J.
- Eijsink V.G.
- Sandgren M.
EPR, CD, and MCD characterizations
Author contributions
References
- The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei.Science. 1994; 265: 524-528
- Biochemical characterization and crystal structures of a fungal family 3 β-glucosidase, Cel3A from Hypocrea jecorina.J. Biol. Chem. 2014; 289: 31624-31637
- Phi/psi-chology: Ramachandran revisited.Structure. 1996; 4: 1395-1400
- A structural study of Hypocrea jecorina Cel5A.Protein Sci. 2011; 20: 1935-1940
- Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei.Science. 1990; 249: 380-386
- An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides.Science. 2010; 330: 219-222
- The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose.PLoS ONE. 2011; 6: e27807
- Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa.ACS Chem. Biol. 2011; 6: 1399-1406
- Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components.Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 15079-15084
- Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism.Proc. Natl. Acad. Sci. U.S.A. 2014; 111: 149-154
- Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases.J. Am. Chem. Soc. 2014; 136: 562-565
- Lytic polysaccharide monooxygenases in biomass conversion.Trends Biotechnol. 2015; 33: 747-761
- Cellulose degradation by polysaccharide monooxygenases.Annu. Rev. Biochem. 2015; 84: 923-946
- Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency.J. Biol. Chem. 2014; 289: 35929-35938
- Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes.Biotechnol. Biofuels. 2013; 6: 41
- A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides.J. Biol. Chem. 2014; 289: 2632-2642
- Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase.Biotechnol. Biofuels. 2015; 8: 101
- Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation.Mol. Cell Proteomics. 2012; 11 (mcp.M111.012419)
- The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6-Å resolution.J. Mol. Biol. 2008; 383: 144-154
- cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast.Eur. J. Biochem. 1997; 249: 584-591
- Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei.Eur. J. Biochem. 2001; 268: 6498-6507
- Recombinant expression of Trichoderma reesei Cel61A in Pichia pastoris: optimizing yield and N-terminal processing.Mol. Biotechnol. 2015; 57: 1010-1017
- Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations.Biotechnol. Biofuels. 2010; 3: 22
- Trichoderma reesei cellobiohydrolase I with an endoglucanase cellulose-binding domain: action on bacterial microcrystalline cellulose.J. Biotechnol. 1997; 57: 49-57
- Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose.Biochim. Biophys. Acta. 1993; 1157: 107-113
- Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation.PLoS ONE. 2012; 7: e48615
- Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose.Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 14646-14651
- The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6-Å resolution, and a comparison with related enzymes.J. Mol. Biol. 1997; 272: 383-397
- Structural and functional characterization of a lytic polysaccharide monooxygenase with broad substrate specificity.J. Biol. Chem. 2015; 290: 22955-22969
- The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases.Nat. Chem. Biol. 2016; 12: 298-303
- Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family.Biochemistry. 2010; 49: 3305-3316
- Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases.Structure. 2012; 20: 1051-1061
- Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium.J. Biol. Chem. 2013; 288: 12828-12839
- Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina.Biotechnol. Biofuels. 2015; 8: 90
- The contribution of non-catalytic carbohydrate binding modules to the activity of lytic polysaccharide monooxygenases.J. Biol. Chem. 2016; 291: 7439-7449
- Non-synergistic cytotoxic effects of Fusarium and Alternaria toxin combinations in Caco-2 cells.Toxicol. Lett. 2016; 241: 1-8
- Evaluation of several microcrystalline celluloses obtained from agricultural by-products.J. Adv. Pharm. Technol. Res. 2011; 2: 144-150
- Bioinformatic characterization of type-specific sequence and structural features in auxiliary activity family 9 proteins.Biotechnol. Biofuels. 2016; 9: 239
- Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2-Å resolution.J. Biol. Chem. 1992; 267: 19291-19298
- Three-dimensional structure of an intact glycoside hydrolase family 15 glucoamylase from Hypocrea jecorina.Biochemistry. 2008; 47: 5746-5754
- Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases.Proc. Natl. Acad. Sci. U.S.A. 2014; 111: 8797-8802
- Oxygen activation by the noncoupled binuclear copper site in peptidylglycine α-hydroxylating monooxygenase: spectroscopic definition of the resting sites and the putative CuIIM-OOH intermediate.Biochemistry. 2004; 43: 5735-5747
- Spectroscopy and reactivity of the type 1 copper site in Fet3p from Saccharomyces cerevisiae: correlation of structure with reactivity in the multicopper oxidases.J. Am. Chem. Soc. 2001; 123: 5507-5517
- Electronic-structure of plastocyanin-excited-state spectral features.J. Am. Chem. Soc. 1988; 110: 3811-3819
- Phaser crystallographic software.J. Appl. Crystallogr. 2007; 40: 658-674
- Integration, scaling, space-group assignment and post-refinement.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 133-144
- XDS.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 125-132
- Free R value: a novel statistical quantity for assessing the accuracy of crystal structures.Nature. 1992; 355: 472-475
- REFMAC5 for the refinement of macromolecular crystal structures.Acta Crystallogr. D Biol. Crystallogr. 2011; 67: 355-367
- Coot: model-building tools for molecular graphics.Acta Crystallogr. D Biol. Crystallogr. 2004; 60: 2126-2132
- Features and development of Coot.Acta Crystallogr. D Biol. Crystallogr. 2010; 66: 486-501
- Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7.Nat. Protoc. 2008; 3: 1171-1179
- Structure-function analysis of the bacterial expansin EXLX1.J. Biol. Chem. 2011; 286: 16814-16823
- Methods for measuring cellulase activities.Methods Enzymol. 1988; 160: 87-112
- Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases.J. Chromatogr. A. 2013; 1271: 144-152
- Privateer: software for the conformational validation of carbohydrate structures.Nat. Struct. Mol. Biol. 2015; 22: 833-834
- Three-dimensional structures of two heavily N-glycosylated Aspergillus sp. family GH3 β-d-glucosidases.Acta Crystallogr. D Struct. Biol. 2016; 72: 254-265
Article info
Publication history
Footnotes
This work was supported by the Swedish Energy Agency under award number 40144-1 (to M. S.), the NIDDK of the National Institutes of Health under Grant R01DK031450 (to E. I. S.), the Ruth L. Kirschstein National Research Service Award from the NIGMS of the National Institutes of Health under Grant F32GM116240 (to K. K. M.), and the Faculty for Natural Resources and Agriculture, Swedish University of Agricultural Sciences (to M. S., H. H., S. K., and N. M.) through the faculty research program MicroDrivE. N. D., S. T. K., A. L., and B. K. are employees of DuPont Industrial Biosciences, a producer of enzymes for industrial use. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
The atomic coordinates and structure factors (codes 5O2X and 5O2W) have been deposited in the Protein Data Bank (http://wwpdb.org/).
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy