Crystal Structure of Human Leukocyte Cell-derived Chemotaxin 2 (LECT2) Reveals a Mechanistic Basis of Functional Evolution in a Mammalian Protein with an M23 Metalloendopeptidase Fold*

Hai Zheng, Takuya Miyakawa, Yoriko Sawano, Atsuko Asano, Akinori Okumura, Satoshi Yamagoe, and Masaru Tanokura

From the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, Department of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, 2-8-30 Kounodai, Ichikawa-shi, Chiba 272-0827, Japan, Department of Diabetic Complications, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan, and Department of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, 2-8-30 Kounodai, Ichikawa-shi, Chiba 272-0827, Japan.

Received for publication, February 9, 2016, and in revised form, June 11, 2016 Published, JBC Papers in Press, June 22, 2016 Published, JBC Papers in Press, June 22, 2016, DOI 10.1074/jbc.M116.720375

Hai Zheng, Takuya Miyakawa, Yoriko Sawano, Atsuko Asano, Akinori Okumura, Satoshi Yamagoe, and Masaru Tanokura

Human leukocyte cell-derived chemotaxin 2 (LECT2), which is predominantly expressed in the liver, is a multifunctional protein. LECT2 is becoming a potential therapeutic target for several diseases of worldwide concern such as rheumatoid arthritis, hepatocellular carcinoma, and obesity. Here, we present the crystal structure of LECT2, the first mammalian protein whose structure contains an M23 metalloendopeptidase fold. The LECT2 structure adopts a conserved Zn(II) coordination configuration but lacks a proposed catalytic histidine residue, and its potential substrate-binding groove is blocked in the vicinity of the Zn(II)-binding site by an additional intrachain loop at the N terminus. Consistent with these structural features, LECT2 was found to be catalytically inactive as a metalloendopeptidase against various types of peptide sequences, including pentaglycine. In addition, a surface plasmon resonance analysis demonstrated that LECT2 bound to the c-Met receptor with micromolar affinity. These results indicate that LECT2 likely plays its critical roles by acting as a ligand for the corresponding protein receptors rather than as an enzymatically active peptidase. The intrachain loop together with the pseudo-active site groove in LECT2 structure may be specific for interactions between LECT2 and receptors. Our study reveals a mechanistic basis for the functional evolution of a mammalian protein with an M23 metalloendopeptidase fold and potentially broadens the implications for the biological importance of noncatalytic peptidases in the M23 family.

This is an open access article under the CC BY license.
LECT2 Structure with an M23 Metalloendopeptidase Fold

idues that occur in the HX₄D (HXXXD for M23B) and HXH motifs (24–28). These residues allow Zn(II) to polarize the substrate carbonyl oxygen to increase the susceptibility to nucleophilic attack. An active site histidine that does not coordinate Zn(II) abstracts a proton from Zn(II)-bound water and donates it to the departing amide nitrogen of the substrate, resulting in cleavage of the peptide bond (24, 29).

The known M23 family members are all present in bacteria (19). The peptidoglycan hydrolase activities are required for their physiological roles, including cell division, cell elongation, and bacteriophage infection (29–31). However, human LECT2 is the sole mammalian protein in the M23 family. Although the sequence of LECT2 contains conserved motifs (HXXXD and HXH), it is unclear whether LECT2 has a metalloendopeptidase activity. Moreover, there is no evidence that the functions of LECT2 require enzymatic catalysis. Thus, it remains unclear whether a peptidase activity is required for the roles of LECT2 in various diseases. Most recently, it was reported that LECT2 can bind to the receptor tyrosine kinase human c-mesenchymal epithelial transition factor (c-Met). This binding is antagonistic to the c-Met receptor activation, and LECT2 acts as a tumor suppressor in HCC (32). This finding suggests an alternative function in which LECT2 is involved in protein-protein interaction.

Here, we present the crystal structure of human LECT2 at 1.94-Å resolution. This is the first mammalian protein whose structure has been confirmed to contain an M23 metalloendopeptidase fold. The LECT2 structure contains the conserved Zn(II) coordination geometry that uses the HXXXD and HXH motifs but lacks a proposed catalytic histidine residue (residue 86 is a Tyr instead of a His). Furthermore, a unique N-terminal intrachain (IC) loop blocks the potential substrate-binding groove in the vicinity of the Zn(II)-binding site, which may hinder the suitable positioning of the substrate for hydrolysis. Our proteolytic assays show that LECT2 lacks endopeptidase activity against various peptide sequences, including pentaglycine, which is consistent with its structural features. In addition, our study reveals the possible receptor-binding sites in the LECT2 structure and provides a better understanding of the functional evolution of a mammalian protein with an M23 metalloendopeptidase fold.

Results

Overall Structure of LECT2—The crystal structure of LECT2 was determined at 1.94-Å resolution. There were two molecules in the asymmetric unit, and each chain was composed of residues 1–133 (numbering is given for the mature LECT2). The root mean square deviation (r.m.s.d.) value was 0.34 Å for the aligned Cα atoms between two chains in an asymmetric unit, which shows that there was no significant structural difference between the chains. Because the electron density in chain B was clearer than that of chain A, the following results for chain B are described. The LECT2 structure possesses a large groove with a Zn(II) at the bottom (Fig. 1). The floor of this groove is formed by a central, six-stranded antiparallel β-sheet (β1, β9, β5, β4, β3, and β7), and its walls consist of four loops: loop 1 (Gly25–Gly37, located at the N terminus), loop 2 (Glu60–Asn71, which connects β3 and β4), loop 3 (Leu106–Ser117, which connects β8 and β9), and loop 4 (Cys124–Pro129, located at the C terminus). Loops 3 and 4 formed a partial α-helix (α1) and a 310-helix (η1), respectively. In addition to the central β-sheet, there is a second, much smaller three-strand β-sheet (β2, β8, and β6), which runs parallel to the central β-sheet and is positioned on the lower face of the central β-sheet. In addition, the structure includes three disulfide bonds, Cys7–Cys92, Cys18–Cys23, and Cys81–Cys124, which is consistent with previous assignments of disulfide linkages using mass spectrometry (18).

A database search using the Dali server showed the close structural similarity of LECT2 to the M23 metalloendopeptidases, including the catalytic domains of the M23B endopeptidase LytM (Protein Data Bank code 2B13; Z score, 12.6; sequence identity, 22%; r.m.s.d. for 111 Cα atoms, 2.5 Å) and lysostaphin (Protein Data Bank code 4QP5; Z score, 12.5; sequence identity, 19%; r.m.s.d. for 109 Cα atoms, 2.2 Å) and the M23A endopeptidase LasA (Protein Data Bank code 3IT7; Z score, 9.0; sequence identity, 16%; r.m.s.d. for 109 Cα atoms, 3.4 Å) (Fig. 2A) (24, 26, 28). These three classical M23 family members all specifically target the pentaglycine cross-links present in S. aureus peptidoglycan. Furthermore, LasA can cleave a wider range of glycine-rich peptides with aromatic or branched amino acids at the P1′ position such as Pro-Gly-Gly ↓ Tyr-Gly and Leu-Gly-Gly ↓ Ala-Gly (↓ denotes the cleavage site) (24, 26, 28, 33). A superimposition of the structures of LECT2 and LytM revealed that the central β-sheet of LECT2 was similar to that of LytM, which consists of six antiparallel β-strands with a conserved topology, but loops 1–4 in the two structures showed significant differences in the lengths and conformations (Fig. 2B). A similar variability of loop regions is also found.
in other structural homologs (Fig. 2A). This variability likely reflects the different substrate specificities as indicated by the broader specificity of LasA than that of LytM or lysostaphin (24). Additionally, a notable difference in the LECT2 structure is an insertion of a protruding IC loop region formed by the Cys18-Cys23 disulfide bond, which immediately precedes loop 1 (Fig. 2B). This N-terminal IC loop lies at one end of the groove of LECT2 and is stabilized by several interactions (Figs. 2, C and D). First, there is a hydrogen bond between the side chains of Arg16 on the IC loop and Asp39 on strand H1. Second, the main chain of Thr17 on the IC loop forms a hydrogen bond with the side chain of Gln116 on loop 3, and the side chain of Asp19 on the IC loop makes a hydrogen bond with the main chain of Gln116 on loop 3. Third, the side chain of His21 forms a hydrogen bond with the main chain of Pro113 on loop 3. Fourth, the main chain of Cys23 on the IC loop makes two hydrogen bonds with the side chain of Arg30 on loop 1.

Zn(II) Coordination Geometry—In the LECT2 structure, Zn(II) is coordinated by His35 (Zn(II)–Nε2, 2.00 Å) of the HXXXD motif, His120 (Zn(II)–Nε1, 2.09 Å) (the second histidine of the HXH motif), and a water molecule (2.77 Å) (Fig. 3A). The distance between Zn(II) and the water molecule (2.77 Å) is longer than the typical Zn(II)-ligand distance. Therefore, there may also be other Zn(II)-binding water molecules, but they are not defined in our structure due to the poor electron density. The four Zn(II) ligands as described above are fixed in space by hydrogen bonds to other amino acid residues (Fig. 3A). Because the Nε2 of His35 directly contacts the Zn(II), the Nε1 is protonated and donates a hydrogen bond to the backbone carbonyl oxygen of Gln25 (2.83 Å). This pattern of interaction is known as an elec-His-Zn motif (34) and is believed to make the histidine imidazole ring more basic. Thus, His35 acts as a stronger ligand to the Zn(II). The Oε2 of Asp39 accepts a hydrogen bond from the guanidino nitrogen of Arg16 (2.88 Å) to stabilize the IC loop as mentioned above. The Nε2 of His120 donates a hydrogen bond to the Oε2 of Glu122 (2.66 Å) to form the other elec-His-Zn motif. In addition, the water molecule donates hydrogen bonds to the Nε2 of
His118 (2.86 Å), which is the first histidine residue of the HXH motif, and the hydroxy oxygen of Tyr86 (2.95 Å). The superimposition shows that the Zn(II)-binding site of LECT2 closely resembles those of three other structural homologs (Fig. 3B).

The three Zn(II) amino acid ligands as well as one of the two residues involved in acid-base catalysis (His118 for LECT2) have almost the same spatial location and orientation in the four structures. However, the position of another proposed catalytic histidine residue, for example His260 of LytM, is replaced by a tyrosine residue (Tyr86) in LECT2, although this conserved histidine and LECT2 Tyr86 have different sequence alignments (Fig. 3B and C). Such a variation has not been previously observed in M23 metalloendopeptidases.

Absence of M23 Metalloendopeptidase Activity in LECT2—LECT2 contains a unique IC loop and lacks one of the two proposed catalytic histidine residues (Tyr86 replaces the conserved His). The two catalytic histidines present unprotonated N\(_2\)H atoms toward the Zn(II)-binding water molecule and are proposed to play alternate roles, either activating the water molecule as a proton acceptor to perform the nucleophilic attack upon the substrate carbonyl carbon or stabilizing the oxyanion intermediate (24, 29). To clarify whether LECT2 functions as an M23 metalloendopeptidase and whether the lack of the conserved histidine residue causes the loss of the M23 metalloendopeptidase activity, we investigated hydrolysis of the typical pentaglycine substrate by both the wild-type and LECT2.
LEC2 Structure with an M23 Metalloendopeptidase Fold

FIGURE 4. Absence of M23 metalloendopeptidase activity in LECT2. A, determination of glygylglycine endopeptidase activity using the TLC method. Pentaglycine was used as the substrate and incubated with lysostaphin (positive control) and the wild-type (WT) or Y86H mutant (Y86H) of LECT2 at 37 °C for 24 h. B, endopeptidase assay against azocasein as a substrate. Azocasein was incubated with various concentrations (1, 2, and 5 μM) of the LECT2 WT or Y86H mutant protein at 37 °C for 24 h. C, endopeptidase assay against nine proteins (myosin, β-galactosidase, phosphorylase b, serum albumin, ovalbumin, carbonic anhydrase, trypsin inhibitor, lysozyme, and aprotinin) as substrates. These proteins were incubated with the various concentrations (1, 2, and 5 μM) of the LECT2 WT or Y86H mutant protein at 37 °C for 24 h. D, interactions of the tartrate molecule with the active sites of LytM and LasA, the tartrate molecules make hydrogen bonds to Asn286 and Thr288 on loop 3 of LytM and to Ser116 and Thr117 on loop 3 of LasA. These results indicate that loop 3 is important for the proper positioning of substrates in the active site (Fig. 4D, left). For LytM and LasA, the tartrate molecules make hydrogen bonds to Asn286 and Thr288 on loop 3 of LytM and to Ser116 and Thr117 on loop 3 of LasA. These results indicate that loop 3 is important for the proper positioning of substrates in the active site (Fig. 4D, left). This loop conformation may be unfavorable for binding of substrates such as pentaglycine. More importantly, the tartrate molecule in the superimposed structures shows steric interference with Arg16 and Ile115 in the vicinity of Zn(II) of LytM. Accordingly, the structure of LECT2 may sterically hinder the binding of the amino acid, at least at the P2 site of a peptide substrate. For the M23 metalloendopeptidases, both sites P2 and P1 in a short peptide (P3-P2-P1 ↓ P1'-P2'-P3) must be occupied for hydrolysis to occur. This is most likely because the conformation of the LECT2 may sterically hinder the binding of the amino acid, at least at the P2 site of a peptide substrate. For the M23 metalloendopeptidases, both sites P2 and P1 in a short peptide (P3-P2-P1 ↓ P1'-P2'-P3) must be occupied for hydrolysis to occur. This is most likely because the conformation of LECT2 and the Y86H mutant using the thin-layer chromatography (TLC) method (Fig. 4A). Lysostaphin was chosen as a positive control because it is commercially available. Lysostaphin cleaved pentaglycine into di- and triglycine. In contrast, LECT2 did not cause cleavage of pentaglycine, although Tyr16 is likely to have the same ability as the histidine residue based on the chemical properties of the aromatic hydroxy group. Furthermore, the Y86H mutant was also not able to cleave the pentaglycine substrate.

To evaluate further endopeptidase activities of LECT2 and its Y86H mutant, we used various types of proteins (azocasein, myosin, β-galactosidase, phosphorylase b, serum albumin, ovalbumin, carbonic anhydrase, trypsin inhibitor, lysozyme, and aprotinin) as substrates in the proteolytic assays. With increasing concentrations of LECT2 from 1 to 5 μM, the azocasein bands on SDS-PAGE remained unchanged compared with the control sample that contained only azocasein (Fig. 4B). Similarly to the results for pentaglycine, the endopeptidase activity against azocasein could not be restored by the Y86H mutation. Furthermore, the band patterns of the other proteins were not changed by the reaction with LECT2 or its Y86H mutant (Fig. 4C). These results show that LECT2 has no endopeptidase activity against various types of peptide sequences.

We tried to explain the lack of LECT2 endopeptidase activity against pentaglycine and various other peptide sequences on the basis of the structural features of LECT2. In the structures of LytM and LasA, the binding patterns of tartrate molecules at the active sites are proposed to resemble those of the hydrolyzed products such as glygylglycine (24, 26). We therefore superimposed the structures of LECT2 and LytM to examine the tartrate binding in the groove of LECT2 (Fig. 4D, left). For LECT2 WT or Y86H mutant using the thin-layer chromatography (TLC) method (Fig. 4E). The wall composed of the three residues Ile115, Arg16, and Arg30 in the vicinity of Zn(II) is colored in magenta and shown as stick models. The tartrate molecule from LytM is shown as yellow sticks with the oxygen atoms colored red.
of a peptide substrate is stabilized by a hydrogen bond between P1 and P4 residues (33). Conversely, this structure suggests that LECT2 could accept the substrate into the Zn(II)-binding site to exert exopeptidase activity because such activity does not require the P2 or P2’ site. However, no exopeptidase activity of LECT2 was observed when pentaglycine was used as a substrate (Fig. 4A).

Binding of LECT2 to c-Met Extracellular Domain (ECD)— Although LECT2 did not cause the cleavage of pentaglycine, LECT2 had the capacity for protein-protein interaction. The interaction between LECT2 and c-Met ECD has been demonstrated by coimmunoprecipitation experiments. The LECT2 binding caused an antagonistic effect on the c-Met receptor activation (32). In our study, the kinetic measurements of the interaction between these proteins were performed for the first time using surface plasmon resonance methods. Sensogramms of the LECT2 binding to c-Met ECD were used to calculate the dissociation constant \(K_d\). The results showed that LECT2 bound to c-Met ECD with a \(K_d\) value of 2.4 ± 0.3 \(\mu\)M (Fig. 5). Normally, the c-Met signaling pathway is driven by its cognate ligand, hepatocyte growth factor (35). The receptor tyrosine kinase c-Met has been identified as a ligand for c-Met but not as an endopeptidase. Interestingly, similarly to LECT2, the β-chain of hepatocyte growth factor, a cognate ligand of c-Met, has a chymotrypsin-like serine protease fold but lacks the hydrolytic activity due to the absence of certain catalytic residues (35). The complex structure reveals that hepatocyte growth factor β binds to c-Met by utilizing its pseudo-active site region (35).

In addition to LECT2, other noncatalytic bacterial proteins with an M23 metalloendopeptidase fold have been found to engage in protein-protein interactions. For example, the extracellular LytM-like domain of the forespore-expressed membrane protein SpoIIQ from *Bacillus subtilis* has no metalloendopeptidase activity because it lacks certain active site residues and a catalytic metal ion. In addition, the substrate-binding groove is closed off by its additional N-terminal β-hairpin region. However, SpoIIQ has developed a novel function for mediating protein-protein interactions that are specifically mediated by this additional region (36, 37). Another example is the *Escherichia coli* cell division protein EnvC. Although the C-terminal LytM domain of EnvC also lacks conserved Zn(II)-coordinating and catalytic residues and is not capable of functioning as a metalloendopeptidase, it can activate amidases that can hydrolyze peptidoglycan. A mutational analysis and molecular modeling studies have suggested that EnvC might use the catalytically inactive groove to bind the amidase autoinhibitory α-helix (38, 39). Based on the examples of SpoIIQ and EnvC, we suspect that the nonconserved N-terminal IC loop together with the central groove of LECT2 may be specific for interactions between LECT2 and its partners. Interestingly, some mul-
multiple domain proteins of the M23 family adopt an autoinhibited state as the result of interactions between two domains. This observation suggests possible binding modes for the protein-protein interactions that occur in those noncatalytic homologs. For instance, in the structure of full-length LytM, a loop from the N-terminal domain binds within the active site groove of the C-terminal catalytic domain, and an asparagine residue on this inhibitory loop occupies one of the ligand sites of Zn(II) (25). Another example is the structure of NMB0315 from Neisseria meningitides. The N-terminal short β3-β4 loop stretches into the active site groove of the C-terminal catalytic domain but is not involved in the Zn(II) coordination (40). These inhibitory segments do not fit into the active site such as a substrate but occupy the substrate-binding groove by tight interactions.

Our study of the structure of LECT2 combined with the findings for other noncatalytic proteins with an M23 metalloendopeptidase fold that we discussed above reveals that these proteins share some common features. Specifically, they lack residues that are important for peptidase activity and/or show variations in the N-terminal region. These variations suggest an efficient mechanism for the evolution of new functions. Although our data do not exclude the possibility that LECT2 has a peptidase activity against a specific peptide sequence, human LECT2 has evolved from a catalytically competent ancestor to a receptor-binding protein that is involved in an important signaling pathway. This function may require the peptidase-inhibitor binding mode for the protein-protein interactions.

Experimental Procedures

Protein Preparation—The human LECT2 was expressed and purified as described previously (41, 42). Briefly, a DNA sequence encoding the mature human LECT2 was amplified by PCR and cloned into the Smal/BamHI site of the pET-48b(+) expression plasmid (Novagen). LECT2 with the N-terminal thioredoxin-hexahistidine (His6) tag was overexpressed in E. coli strain Rosetta-gami 2 (DE3) (Novagen). The structure determination was performed using selenomethionine-substituted LECT2 (LECT2_{SeMet}) that was produced in M9 medium containing various amino acids (100 mg/liter L-lysine, L-phenylalanine, and L-threonine and 50 mg/liter L-isoleucine, L-leucine, L-valine, and L-selenomethionine). After expression of the protein, the harvested cells were disrupted by sonication, and centrifugation was used to separate the insoluble inclusion bodies from the soluble proteins. The suspension of LECT2 inclusion bodies was adjusted to a protein concentration of 0.5 mg/ml in the refolding buffer (50 mM Tris-HCl (pH 7.0) and 500 mM imidodiacetic acid, and 50 μM ZnCl₂) and was then crystallized using the sitting drop vapor diffusion method (42). The best crystals were obtained by mixing 1.0 μl of the protein solution with 1.0 μl of the reservoir solution, which consisted of 0.2 M ammonium sulfate, 0.1 M HEPES (pH 7.5), and 25% (w/v) PEG 8000 at 20 °C. The x-ray diffraction data were collected using the BL-5A beamline at the Photon Factory (Tsukuba, Japan) with an ADSC Quantum 210r CCD detector. A crystal of LECT2_{SeMet} was used to collect a single wavelength anomalous dispersion data set at the selenium peak wavelength of 0.9792 Å. The data set was indexed and integrated using the HKL2000 program suite (43). Table 1 summarizes the data collection and data processing statistics.

Structure Determination and Refinement—The selenium positions in the protein crystal were determined with SHELXD (44). Heavy atom refinement and phase calculations were performed with SHARP (45). An initial model was automatically built with the ARP/wARP package from the CCP4 suite (46). The missing amino acid residues were manually added using Coot (47). The obtained model was refined using Refmac5 (48) from the CCP4 program suite. Iterative rounds of refinements were continued with Coot and Refmac5. The crystallographic water molecules were automatically introduced using ARP/wARP with subsequent manual modification. The quality of the model was verified using PROCHECK (49). The final crystal structure was refined to R_{work} and R_{free} values of 17.7 and 22.3%, respectively. The refinement statistics are summarized in Table 1. The visualization and superimposition of the protein structures were achieved using PyMOL, and the r.m.s.d. values for superimposed structures were calculated using the Dali server (50).

Site-directed Mutagenesis—The LECT2 Y86H mutant was generated with the PCR-based site-directed mutagenesis method using a QuickChange site-directed mutagenesis kit (Stratagene) (51) with the pET48b-LECT2 plasmid as a template. The primers were purchased from Operon Technologies Inc. and designed as follows: 5′-GGAAGAGGTTTTTTGTGT-CAAAATGTTCCACATTAAGCCAATTAAG-3′ and 5′-CTTAATT GGCTTAATGTGGAACATTTTGACACAAAAACCTCTTTCC-3′. The underlined characters in the primer sequences are the altered nucleobases. The mutation was verified by the DNA sequencing service of FASMAC. The Y86H mutant was expressed in soluble form and purified according to the method described for the wild-type LECT2.

M23 Metalloendopeptidase Activity Assay—The assay was performed according to a previous report with some modifications (25, 26). The soluble form of the expressed LECT2 was concentrated to 5 mg/ml in a buffer containing 10 mM Tris-HCl (pH 7.0) and 50 μM ZnCl₂. Subsequently, 0.2 mg/ml LECT2 or lysostaphin was incubated with 1 mM pentaglycine as the substrate (Bachem AG) for 24 h at 37 °C in 20 mM Tris-HCl (pH 7.5) with a final Zn(II) concentration of 2 μM. The mature recombinant lysostaphin from Staphylococcus simulans biovar staphylolyticus (Wako) was used as a positive control in the assay system. After the reaction, the enzyme activity was mea-
proteins was also used as a substrate. Before use in the assay, the standard protein mixture (Bio-Rad) that contained nine different azocasein was evaluated using SDS-PAGE. A broad range standard protein mixture was incubated with LECT2 (1–5 μM) for 1 h at 37 °C in 24 mM Tris-HCl (pH 7.5) with 1 μM ZnCl2. After the reaction, the samples were evaluated using SDS-PAGE.

Endopeptidase Activity Assay—The endopeptidase activity of LECT2 was assayed against various types of proteins. Casein was used as a generic proteinase substrate because it is digested by a wide range of proteinases. Azocasein (Sigma) was purified by Q-Sepharose Fast Flow (GE Healthcare), and the purity of azocasein was evaluated using SDS-PAGE. A broad range standard protein mixture (Bio-Rad) that contained nine different proteins was also used as a substrate. Before use in the assay, the purified LECT2 was diluted with 10 mM Tris-HCl (pH 7.0) and 5 μM ZnCl2 to permit Zn(II) uptake. The protein was then concentrated to >300 μM by ultrafiltration. Azocasein or the standard protein mixture was incubated with LECT2 (1–5 μM) for 24 h at 37 °C in 20 mM Tris-HCl (pH 7.5) with 1 μM ZnCl2. After the reaction, the samples were evaluated using SDS-PAGE.

Surface Plasmon Resonance Analysis—The interaction of LECT2 with the c-Met receptor was measured using surface plasmon resonance with a Biacore T200 instrument equipped with a Series S sensor chip SA (GE Healthcare) at 25 °C. This chip contains immobilized streptavidin and is used for high affinity capture of biotinylated ligands. Therefore, the recombinant human c-Met ECD (Glu25-Thr932, Sino Biological Inc.) was first biotinylated by incubation with an equimolar amount of sulfo-NHS-LC-LC-biotin (Pierce) on ice for 2 h after which the unreacted biotin was removed using size exclusion chromatography on a Superdex 200 HR 10/30 column (GE Healthcare). A total of 1963 response units of the biotinylated c-Met ECD were immobilized on the flow cell of the SA sensor chip. The remaining binding sites were blocked with 1 mM free biotin to reduce the nonspecific binding of protein. For the kinetic measurements, LECT2 at concentrations ranging from 0.125 to 8 μM in the running buffer (10 mM HEPES (pH 7.4), 150 mM NaCl, 50 μM ZnCl2, and 0.005% Tween 20) was injected over the c-Met surface and the blank flow cell for 2 min at a flow rate of 30 μl/min, and then the bound LECT2 was allowed to disassociate for 10 min. Finally, the resulting data were analyzed with the Biacore T200 evaluation software using a steady-state affinity model.

Acknowledgments—We thank the scientists and staff at the Photon Factory, Tsukuba, Japan. The synchrotron radiation experiments were performed on the BL-5A beamline at the Photon Factory (Proposal Number 2008S2–001). We also thank Prof. Kazuo Suzuki (Teikyo University) for critical discussions.

References

in mouse anti-type II collagen antibody-induced arthritis. *Arthritis Rheum.* 58, 413–421
LECT2 Structure with an M23 Metalloendopeptidase Fold

